
4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

1/25

Modeling and Optimization with OPL
4 Optimization of Graph Problems

Andreas Popp

These slides are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

2/25

Inhalt

4.1 Short introduction into graph theory

4.2 Representation of graphs in OPL

4.3 OPL: custom tuples as data structure

4.4 OPL: conditional operators

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

3/25

4.1 Short introduction into graph
theory

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

4/25

Example: Lewig Adelburg

sales price

machine B
(capacity: 196h)

machine A
(capacity: 164h)

I
1

J
3

5,7 h/t 3,9 h/t

2,1 h/t 1,9 h/t

4000 €/t

8400 €/t

I
2

3,5 h/t 5,5 h/t
3800 €/t

J
1

J
2

J
4

2,8 h/t 3,5 h/t
7900 €/t

3,2 h/t 3,0 h/t
7300 €/t

1,5 h/t 0,0 h/t
8800 €/t

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

5/25

Concept of a graph: components

I
1

I
2

J
4

J
1

J
3

J
2

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

5/25

Concept of a graph: components

I
1

I
2

J
4

J
1

J
3

J
2Vertex

Edge

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

6/25

Concept of a graph: formal description

I Directed Graphs are defined as a tuple G = (V ,E)
with a set of vertices V and a set of edges E ⊆ V × V .

in example:
G = ({I1, I2, J1, J2, J3, J4}, {(I1, J1), (I1, J2), (I2, J3), (J2, J4)})

I Undirected graphs are graphs whose edges do not have
a specific direction.

I Weighted graphs are defined as a tuple G = (V ,E , g)
with a set of vertices V , a set of edges E ⊆ V × V and
a weight function g : E → R.

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

7/25

4.2 Representation of graphs in
OPL

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

8/25

Sequence dependet production problem

Index sets:
I set of products
R set of ressources
Parameters:
pi price of product i ∈ I
cr capacity of ressource r ∈ R
vri capacity consumption of product i ∈ I on ressource r ∈ R
E set of edges in the sequence graph
Decision variables:
xi production quantity of product i ∈ I

Modellbeschreibung:

max
∑
i∈I

pi · xi

s.t.
∑
i∈I

vri · xi ≤ ci ∀r ∈ R (I)

xi ≥
∑

(i,j)∈E

xj ∀i ∈ I (II)

xi ≥ 0 ∀i ∈ I

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

9/25

Graphs in optimization problems

Application example for graphs

xi ≥
∑

(i ,j)∈E

xj ∀i ∈ I

Question: How can the graph be represented in the
optimization model?

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

10/25

The adjacency matrix

Definition: adjacency matrix

The adjacency matrix of a graph G = (V ,E) with
V = {V1, . . . ,VN} is a quadratic N × N-Matrix (aij), which
holds:

aij =

{
1 Edge Vi → Vj exists
0 otherwise

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

11/25

Adjacency matrix in the example

I
1

I
2

J
4

J
1

J
3

J
2

_ Translation into adjacency matrix _



I1 I2 J1 J2 J3 J4

I1 0 0 1 1 0 0
I2 0 0 0 0 1 0
J1 0 0 0 0 0 0
J2 0 0 0 0 0 1
J3 0 0 0 0 0 0
J4 0 0 0 0 0 0



4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

12/25

Application of adjacency matrixes in optimization
problems

{string} I = ...;

int a [I,I] = [

[0, 0, 1, 1, 0, 0],

[0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

];

xi ≥
∑

(i ,j)∈E

xj ∀i ∈ I

_ OPL _

forall(i in I)

x[i] >= sum (j in I)(a[i,j]*x[j]);

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

13/25

Adjacency lists

Definition: adjacency lists

The adjacency list of a vertex v ∈ V of a graph G = (V ,E)
is a set Av ⊆ V , which contains all successors of v .

Adjacency lists in the example

I
1

I
2

J
4

J
1

J
3

J
2

AI1 = {J1, J2} AI2 = {J3}
AJ1 = {} AJ2 = {J4}
AJ3 = {} AJ4 = {}

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

14/25

Application of adjacency lists in optimization
problems

{string} I = ...;

{string} A[I] = [

{"J1", "J2"},

{"J3"},

{},

{"J4"},

{},

{}

];

xi ≥
∑

(i ,j)∈E

xj ∀i ∈ I

_ OPL _

forall (i in I)

x[i] >= sum(j in A[i])(x[j]);

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

15/25

4.3 OPL: custom tuples as data
structure

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

16/25

Example: Relieve Doctors

E. Elric

A. L. Armstrong

R. Mustang

Liberia

Nigeria

5000

8000

4000

3000

5000

Doctors Hospitals

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

16/25

Example: Relieve Doctors

E. Elric

A. L. Armstrong

R. Mustang

Liberia

Nigeria

5000

8000

4000

3000

5000

Doctors Hospitals

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

17/25

Model: Assignment problem

Index sets:
R set of ressources
T set of tasks
Parameters:
E set of egdes in the assignment graph
crt cost of each edge (r , t) ∈ E
Decision variables:
xrt binary variable representing the choice of edge (r , t) ∈ E

Model description:

min
∑

(r ,t)∈E

crt · xrt

s.t.
∑

(r ,t)∈E

xrt = 1 ∀t ∈ T (I)∑
(r ,t)∈E

xrt ≤ 1 ∀r ∈ R (II)

xrt ∈ {0, 1} ∀(r , t) ∈ E

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

18/25

Representation of missing edges in OPL

I Assign prohibitively high costs to missing edges.
Disadvantages:

I unnecessary binary variables
I susceptible to machine rounding errors
I only applicable to weighted graphs (if at all)

I Adjacency matrix. Disadvantages:
I unnecessary binary variables

I Adjacency lists. Disadvantages:
I x[r in R][t in A[r]] � Error:

”
Variable indexer size

not allowed for a generic array.“

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

19/25

Tuple data structure

Tuples are custom data structurs, consisting of elements of
other data types.

Definition of a new tuple data type

tuple Name_of_the_tuple_data_type {

Data_type_of_1st_Element Name_of_1st_Element ;

Data_type_of_2nd_Element Name_of_2nd_Element ;

...

}

Example: Edges as tuple data type

{string} V = {"A", "B", "C"};

tupel edge {

string start;

string end;

};

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

20/25

Tuple literals and elements

In a tuple data type’s literals the elements are sorted into
angle brackets.

Example: Definition of an edge as literal

edge e = <"A", "B">;

Single elements of a tuple data type are adressed with a dot.

Example: getting the starting vertex of an edge

e.start � "A"

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

21/25

Application of tuple data type (Alternative 1)

Vertices and Edges shall be defined as above.

Application example∑
(r ,t)∈E

xrt = 1 ∀t ∈ T

_ OPL _

forall(t in T)

sum(<r,t> in E)(x[<r,t>]) == 1;

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

22/25

4.4 OPL: conditional operators

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

23/25

Conditional operators

Using a colon, we can apply conditions to iteration indexes,
which have to be fulfilled for an index to be incorporated by
the operator:

sum(iteration index in index set : condition)

resp.

forall(iteration index in index set : condition)

Conditions are logical expressions (not boolean decision
variables!)

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

24/25

Construtction of conditions

Literals for logical values

true, false

Comparison operators for logical values

math. notation = 6= ≤ < ≥ >

OPL Syntax == != <= < >= >

Logical operators for logical values

math. notation ¬ ∧ ∨ Y

OPL syntax ! && || !=

4 Optimization of
Graph Problems

CC-BY-SA
A. Popp

4.1 Short
introduction into
graph theory

4.2 Representation
of graphs in OPL

4.3 OPL: custom
tuples as data
structure

4.4 OPL:
conditional
operators

25/25

Application of tuple data type (Alternative 2)

Vertices and Edges shall be defined as above.

Application example∑
(r ,t)∈E

xrt = 1 ∀t ∈ T

_ OPL _

forall(t in T)

sum(e in E : e.task == t)(x[e]) == 1;

	Short introduction into graph theory
	Representation of graphs in OPL
	OPL: custom tuples as data structure
	OPL: conditional operators

