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Abstract

This note argues that parallel-in-time methods will be necessary for doing high-
fidelity time-dependent simulations in the future. A “proof” is given to support the ar-
gument and to provide a framework for debate. The effect of a parallel-in-time paradigm
on scientific computing practice is also discussed.

1 Skepticism about parallel-in-time

Skepticism about the viability and necessity of parallel-in-time methods continues. Here
are some of the questions and comments the authors have heard on this topic:

• What about causality? Parallel-in-time methods converge to the same space-time
solution as time stepping, so causality is not broken.

• What about shocks and discontinuities? Coarse space-time problems used in parallel-
in-time methods do not (by definition) need to capture fine-scale features. This has
been demonstrated for both shocks [9] and discontinuities [5, 7].

• PinT requires too much memory. Eventually there will be ample resources. This is
reminiscent of the transition from 2D-space to 3D-space in the 1990s. Also, it is possi-
ble to keep per-processor memory requirements nearly the same as time stepping [3].

• What about hyperbolic and chaotic problems? This is indeed a research area, but
proof-of-principle has been demonstrated and progress continues [8, 10, 11, 12].

• PinT algorithms have terrible parallel efficiencies. Parallel efficiency alone can be
misleading - slow codes are often highly efficient. Furthermore, if efficiency measures
the time to solution on a given amount of resources, then sequential time stepping is
often much less efficient than parallel-in-time.
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Although parallel-in-time methods date back to the 1960s, it is only recently that research
on this topic has taken off [4, 6]. As the research matures, these methods will become
increasingly more practical.

2 The need for parallel-in-time

The following is a “proof” that parallel-in-time methods are inevitable for most time-
dependent applications. The result relies on accepting four basic assumptions, which are
meant to help frame the debate on this question and are discussed after the theorem. Note
that nt defines the size of the temporal dimension and is analogous to the number of time
steps in a prototypical time-stepping application. There are also three concepts of time to
distinguish: the temporal dimension in the simulation (lower-case t), simulation wall-clock
time (capital T ), and time itself (denoted τ), i.e., our past, present, and future.

Theorem 2.1. Assume the following are true:

1. Scientists will continue to want higher fidelity simulations, requiring the size of the
temporal dimension to increase indefinitely:

nt(τ) −−−→
τ→∞

∞

2. Simulation time for time stepping is linear in nt, where T0(τ) is some atomic time:

Tseq(τ) ≳ ntT0(τ)

3. Simulation time for parallel-in-time is polylogarithmic in nt:

Tpint(τ) ≲ logq(nt)T0(τ)

4. Scientists have a threshold beyond which they will switch to a faster method:

Tseq > θTpint ⇒ switch to parallel-in-time

Then, at some time in the future, scientists will adopt parallel-in-time.

Proof. Let n = nt to simplify notation. Since log(n) ∼ ln(n), use natural log without loss
of generality. With

F (n) =
n

lnq(n)
,

dF

dn
=

ln(n)− q

lnq+1(n)
,

it is easy to verify that F > 1 for all n > 1, and F increases without bound for n ∈ (eq,∞).
Hence, for any θ1 ≥ 1, there is a corresponding n1 such that F (n) > θ1 for all n > n1, and
therefore the following holds for all n > n1 with constants c2, c3 from assumptions 2, 3:

Tseq

Tpint
≥ c2c3F (n) > θ1c2c3.

Choosing θ1 such that θ1c2c3 ≥ θ, then Tseq > θTpint and the result follows from assump-
tions 1 and 4.
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Assumption 1: Scientists will continue to want higher fidelity simulations, re-
quiring the size of the temporal dimension to increase indefinitely

The size of the temporal dimension affects simulation accuracy and is a function of the
computer resources used. It is hard to imagine scientists not wanting to fully utilize available
resources to improve simulation accuracy. The bigger question is about computer resource
growth. Given that growth has been exponential and is expected to stay this way for the
foreseeable future, it’s reasonable to expect that this will continue for quite some time.

There are other useful ways to utilize computer resources to enhance simulation fidelity,
for example, uncertainty quantification. More efficient use of memory through adaptive
mesh refinement or reduced-order basis methods can also improve the accuracy of some
simulations with respect to available resources. However, these techniques only slow or
delay growth of nt. They do not offset it.

Assumption 2: Simulation time for time stepping is linear in nt

If nt is the number of time steps and T0 is proportional to the cost of doing a single time step,
then this assumption clearly holds. Note that the assumption allows nt to be something
more exotic as long as it is proportional to the sequential temporal component of the code.
The value of T0 is partially determined by machine hardware characteristics, which change
over time (e.g., clock speeds, memory/network latency/bandwidth). However, its value is
also affected by the application and the application scientist. For example, a time step
may depend linearly on the memory accessed (e.g., an explicit time step) or it may depend
nonlinearly. Likewise, scientists may have different strategies for using the available machine
resources. Writing T0 as a function of τ allows for this variability over time.

Note that if T0 ∼ 1/nt, then simulation time does not increase due to time stepping.
This is what happened until about 2005 as a result of clock speed increases. It might then
seem that developing approaches to decrease T0 could circumvent the need for parallel-in-
time methods, but the result in Theorem 2.1 does not depend on the value of T0. Even
though a smaller T0 implies faster time stepping, it similarly implies faster parallel-in-time
methods. The real driver is the increase in computer resources.

Assumption 3: Simulation time for parallel-in-time is polylogarithmic in nt

Multigrid is one effective aproach for parallelizing in the time dimension. Multigrid meth-
ods have been shown to converge to discretization accuracy in time proportional to log2(N)
for some problems, where N is the problem size. For example, solve time for multigrid on
parallel machines is determined by the number of grids visited, which defines the serial com-
ponent of the method. The following two multigrid approaches converge to discretization
accuracy with a serial component proportional to log2(N) [2]:

• Full multigrid (FMG) - one cycle with log2(N) grids visited;

• V-cycle multigrid - log(N) cycles with log(N) grids visited.

This is nearly optimal with respect to the O(log(N)) lower bound derived in [13].
Multigrid-based parallel-in-time methods are also able to achieve the above polylogarith-

mic solution times for some classes of problems (e.g., diffusion). However, parallel-in-time
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methods require more memory resources than time stepping. Hence, for a given memory
footprint, parallel-in-time methods have a smaller value of nt than time stepping, while the
result in Theorem 2.1 relies on a common value.

To put the two methods on the same footing, consider a machine with available memory
of size M and a space-time problem of size ns × nt, where ns and nt are the “spatial”
and temporal sizes respectively. Assume that ns ∼ nk

t with k > 0, and assume that the
entire memory is used to solve the problem. Note that if k = 0, only a finite amount of
memory and parallelism can be used in the spatial dimension, leaving only parallel-in-time
as a means of exploiting additional resources. The diffusion problem mentioned above fits
into this framework with k = d/2, where d is the number of spatial dimensions (assuming
∆t ∼ ∆x2). From this, utilizing all of the memory resources implies

Tseq : M ∼ ns ∼ nk
t ⇒ nt,seq ∼ M1/k

Tpint : M ∼ nsnt ∼ nk+1
t ⇒ nt,pint ∼ M1/(k+1).

If the same space-time problem is solved in Theorem 2.1, then the memory used by sequential
time stepping satisfies

nt = nt,pint ⇒ Mseq ∼ Mk/(k+1) < M.

Although larger problems may be solved with sequential time stepping, the solve times are
potentially much longer, and scientists may prefer to solve smaller problems faster with
a parallel-in-time method. This tradeoff is captured in the threshold θ of Assumption 4.
The above discussion is also valid when the parallel-in-time method is applied to successive
sub-windows in time if the window size is proportional to nt.

The main research issue here is developing parallel-in-time methods that have the right
convergence behavior. Note that if these methods are not developed and T0 remains fixed
(as with current architectures), time stepping is a bottleneck and resources go unused.

Assumption 4: Scientists have a threshold beyond which they will switch to a
faster method

If Assumption 1 holds and T0 is fixed, then not having a threshold runs counter to the desire
for higher fidelity simulations (it requires living with a growing bottleneck indefinitely, even
when there is an alternative). If T0 decreases indefinitely, then higher fidelity simulations
could still be done, but scientist who switch to a faster method would be more competi-
tive than those who do not. Hence, all scientists likely have a threshold, but the size of
that threshold will vary depending on the relative importance of simulation time versus
simulation accuracy and other considerations.

Achieving a threshold depends on the constants in the models and the availability of
resources. Recall, for example, the scenario discussed above where nt,seq ∼ M1/k. Ap-
plications with many spatial dimensions may not have enough resources today to reach a
threshold and switch to parallel-in-time. Conversely, applications with fewer spatial dimen-
sions and many time steps may benefit from parallel-in-time now, assuming appropriate
methods exist.
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3 A paradigm shift

The above “proof” argues that it’s not a matter of if parallel-in-time methods will be needed,
but when. Continued research and development in this area is essential, because scientific
simulation with parallel-in-time methods is dramatically different from using traditional
time stepping. Here are a few points of note on this approaching paradigm shift:

• Solver convergence in the time dimension becomes a new issue to consider. For time
stepping methods, there is no distinction between the temporal discretization and the
solution in the temporal dimension, since the latter is an exact solver.

• The choice of using an explicit versus implicit method may change, since the time to
solve either with parallel-in-time is roughly the same (on the same space-time mesh).
To see this, consider the following space-time stencils for an example 1D-space-time
diffusion problem:

explicit =

 ∗
∗ ∗ ∗

 implicit =

 ∗ ∗ ∗
∗

 .

These are both 4-point stencils, and from a multigrid solver point of view, there is no
meaningful difference. They require similar cycle complexity to solve.

• Computational steering changes. Simulations are traditionally steered as the system
evolves forward in time. With parallel-in-time, steering intervention would most likely
occur at coarse temporal scales and apply to the entire space-time domain.

• Full space-time adaptivity will become commonplace. There are not many codes that
currently use full space-time adaptivity. One exception is the structured adaptive
mesh refinement community, which uses a technique called subcycling [1]. Most ap-
plications take a single time step for all spatial points, driven by the size of the smallest
spatial resolution.

• Fully unstructured space-time grids becomes viable, that is, method of lines will no
longer be needed.
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