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NOTE: This document is a brief summary (a cheatsheet, actually) of Chapter 5 from
the textbook Digital Signal Processing, by S. K. Mitra.

• The N-point DFT of a sequence x[n] is defined as:

X[k] =

N−1
∑

n=0

x[n]e−j 2π

N
kn =

N−1
∑

n=0

x[n]W kn
N 0 ≤ k ≤ N − 1 (1)

where WN = e−j 2π

N

• The N-point inverse DFT (IDFT) of a sequence X[k] is defined as:

x[n] =
1

N

N−1
∑

k=0

X[k]W−kn
N 0 ≤ n ≤ N − 1 (2)

• The N-point DFT of a sequence x[n] of length L < N can be obtained by zero-
padding the sequence x[n] until it has the desired length of N samples. That
is:

DFTN{x[n]} = DFTN{xzp[n]}

where

xzp[n] =

{

x[n] if 0 ≤ n ≤ L− 1
0 if L ≤ n ≤ N

• Whenever computing DTFs or IDFTs it is useful to remember that:

N−1
∑

n=0

WAn
N =

{

N if A = rN with r an integer
0 otherwise

(3)
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• The DFT can also be expressed in matrix form like:

X = DNx (4)

where

X = [X[0],X[1], ...,X[N − 1]]T

x = [x[0], x[1], ..., x[N − 1]]T

and DN is the N ×N DFT matrix given by:

DN =

















1 1 1 1 1

1 W 1
N W 2

N · · · W
(N−1)
N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

...
. . .

...

1 W
(N−1)
N W

2(N−1)
N · · · W

(N−1)2

N

















(5)

• Equivalently, the inverse DFT (IDFT) can be expressed in matrix form:

x = D
−1
N X (6)

where:

D
−1
N =

1

N
D

∗
N =

1

N

















1 1 1 1 1

1 W−1
N W−2

N · · · W
−(N−1)
N

1 W−2
N W−4

N · · · W
−2(N−1)
N

...
...

...
. . .

...

1 W
−(N−1)
N W

−2(N−1)
N · · · W

−(N−1)2

N

















(7)

• An important operator when working with DTFs is the modulo operator. This
operator is denoted by < a >b= c, which reads as ”c is equal to a modulo b”. This
operator works differently depending whether a is a positive or negative integer.

< a >b=

{

a−
⌊

a
b

⌋

b if a > 0
⌈

|a|
b

⌉

b+ a if a < 0

where ⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions, respectively. For instance:

< 10 >4 = 10−
⌊

10
4

⌋

· 4 = 10− 2 · 4 = 2

< −5 >3 =
⌈

|−5|
3

⌉

· 3 + (−5) = 2 · 3 + (−5) = 1
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• The circular convolution can be defined using the modulo operator:

g[n]
N
⊗ h[n] =

N−1
∑

m=0

g[m]h[< n−m >N ] 0 ≤ n ≤ N − 1 (8)

• The DFT has several symmetry properties that can greatly simplify the compu-
tation of the DFT:

Length-N sequence N-point DFT

x[n] X[k]
x∗[n] X∗ [< −k >N ]

Re{x[n]} Xccs[k] =
1
2 [X [k] +X∗ [< −k >N ]]

j · Im{x[n]} Xcca[k] =
1
2 [X [k]−X∗ [< −k >N ]]

xccs[n] =
1
2 [x [n] + x∗ [< −n >N ]] Re{X[k]}

xcca[n] =
1
2 [x [n]− x∗ [< −n >N ]] j · Im{X[k]}

• Furthermore, if x[n] is a length-N real sequence then the corresponding N-point
DFT has the additional symmetry properties:

X[k] = X∗[< −k >N ]
Re{X[k]} = Re{X[< −k >N ]}
Im{X[k]} = −Im{X[< −k >N ]}
|X[k]| = |X[< −k >N ]|

arg{X[k]} = −arg{X[< −k >N ]}

• The following theorems are also very useful when computing the DFT of a length-
N sequence:

Length-N sequence N-point DFT

g[n] G[k]
h[n] H[K]

αg[n] + βh[n] αG[k] + βH[k]

g[< n− n0 >N ] W kn0

N G[k]

W−k0n
N g[n] G[< k − k0 >N ]

g[n]
N
⊗ h[n] G[k]H[k]

g[n]h[n] 1
N
G[k]

N
⊗ H[k]

• The Parseval’s relation can be also useful, specially when we want to compute
the energy of a sequence g[n] that has a DFT G[k]:
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N−1
∑

n=0

|g[n]|2 =
1

N

N−1
∑

k=0

|G[k]|2

• The circular convolution of two sequences g[n] and h[n] can be computed using
the DFT:

g[n]
DFT
→ G[k]

h[n]
DFT
→ H[k]

}

=⇒ g[n]
N
⊗ h[n] = IDFT {G[k]H[k]}

• The linear convolution of a length-Lx sequence x[n] and a length-Ly sequence
y[n] can also be computed using the DFT:

x[n]⊗ y[n] = x[n]
N
⊗ y[n] = IDFT {DFTN {x[n]}DFTN {x[n]}}

where N = Lx + Ly − 1.

• The DFTs of two length-N real sequences g[n] and h[n] can be computed using
the DFT of a single complex sequence x[n] = g[n] + jh[n]:

g[n]
DFT
→ G[k]

h[n]
DFT
→ H[k]

x[n]
DFT
→ X[k]











=⇒

{

G[k] = 1
2 [X[k] +X∗[< −k >N ]]

H[k] = 1
2j [X[k] −X∗[< −k >N ]]
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