Finite-Length Discrete Transforms

Germán Gómez-Herrero, http://germangh.com

February 3, 2013

NOTE: This document is a brief summary (a cheatsheet, actually) of Chapter 5 from the textbook Digital Signal Processing, by S. K. Mitra.

- The N-point DFT of a sequence $x[n]$ is defined as:

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \quad 0 \leq k \leq N-1 \tag{1}
\end{equation*}
$$

where $W_{N}=e^{-j \frac{2 \pi}{N}}$

- The N-point inverse DFT (IDFT) of a sequence $X[k]$ is defined as:

$$
\begin{equation*}
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} \quad 0 \leq n \leq N-1 \tag{2}
\end{equation*}
$$

- The N-point DFT of a sequence $x[n]$ of length $L<N$ can be obtained by zeropadding the sequence $x[n]$ until it has the desired length of N samples. That is:

$$
\operatorname{DFT}_{N}\{x[n]\}=\operatorname{DFT}_{N}\left\{x_{z p}[n]\right\}
$$

where

$$
x_{z p}[n]=\left\{\begin{array}{lll}
x[n] & \text { if } & 0 \leq n \leq L-1 \\
0 & \text { if } & L \leq n \leq N
\end{array}\right.
$$

- Whenever computing DTFs or IDFTs it is useful to remember that:

$$
\sum_{n=0}^{N-1} W_{N}^{A n}= \begin{cases}N & \text { if } A=r N \quad \text { with } \quad r \quad \text { an integer } \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

- The DFT can also be expressed in matrix form like:

$$
\begin{equation*}
\mathbf{X}=\mathbf{D}_{N} \mathbf{x} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{X} & =[X[0], X[1], \ldots, X[N-1]]^{T} \\
\mathbf{x} & =[x[0], x[1], \ldots, x[N-1]]^{T}
\end{aligned}
$$

and \mathbf{D}_{N} is the $N \times N$ DFT matrix given by:

$$
\mathbf{D}_{N}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \tag{5}\\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{(N-1)} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)^{2}}
\end{array}\right]
$$

- Equivalently, the inverse DFT (IDFT) can be expressed in matrix form:

$$
\begin{equation*}
\mathbf{x}=\mathbf{D}_{N}^{-1} \mathbf{X} \tag{6}
\end{equation*}
$$

where:

$$
\mathbf{D}_{N}^{-1}=\frac{1}{N} \mathbf{D}_{N}^{*}=\frac{1}{N}\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \tag{7}\\
1 & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\
1 & W_{N}^{-2} & W_{N}^{-4} & \cdots & W_{N}^{-2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)^{2}}
\end{array}\right]
$$

- An important operator when working with DTFs is the modulo operator. This operator is denoted by $<a>_{b}=c$, which reads as " c is equal to a modulo b ". This operator works differently depending whether a is a positive or negative integer.

$$
<a>_{b}=\left\{\begin{array}{lll}
a-\left\lfloor\frac{a}{b}\right\rfloor b & \text { if } & a>0 \\
\left\lceil\frac{|a|}{b}\right\rceil b+a & \text { if } & a<0
\end{array}\right.
$$

where $\lfloor\cdot\rfloor$ and $\lceil\cdot\rceil$ denote the floor and ceiling functions, respectively. For instance:

$$
\begin{aligned}
& <10>_{4}=10-\left\lfloor\frac{10}{4}\right\rfloor \cdot 4=10-2 \cdot 4=2 \\
& <-5>_{3}=\left\lceil\left.\frac{|-5|}{3} \right\rvert\, \cdot 3+(-5)=2 \cdot 3+(-5)=1\right.
\end{aligned}
$$

- The circular convolution can be defined using the modulo operator:

$$
\begin{equation*}
g[n] \stackrel{N}{\otimes} h[n]=\sum_{m=0}^{N-1} g[m] h\left[<n-m>_{N}\right] \quad 0 \leq n \leq N-1 \tag{8}
\end{equation*}
$$

- The DFT has several symmetry properties that can greatly simplify the computation of the DFT:

Length-N sequence	N-point DFT
$x[n]$	$X[k]$
$x^{*}[n]$	$X^{*}\left[<-k>_{N}\right]$
$\operatorname{Re}\{x[n]\}$	$X_{c c s}[k]=\frac{1}{2}\left[X[k]+X^{*}\left[<-k>_{N}\right]\right]$
$j \cdot \operatorname{Im}\{x[n]\}$	$X_{c c a}[k]=\frac{1}{2}\left[X[k]-X^{*}\left[<-k>_{N}\right]\right]$
$x_{c c s}[n]=\frac{1}{2}\left[x[n]+x^{*}\left[<-n>_{N}\right]\right]$	$\operatorname{Re}\{X[k]\}$
$x_{c c a}[n]=\frac{1}{2}\left[x[n]-x^{*}\left[<-n>_{N}\right]\right]$	$j \cdot \operatorname{Im}\{X[k]\}$

- Furthermore, if $x[n]$ is a length-N real sequence then the corresponding N-point DFT has the additional symmetry properties:

$$
\begin{array}{rlc}
X[k] & =X^{*}\left[<-k>_{N}\right] \\
\operatorname{Re}\{X[k]\} & =\operatorname{Re}\left\{X\left[<-k>_{N}\right]\right\} \\
\operatorname{Im}\{X[k]\} & =-\operatorname{Im}\left\{X\left[<-k>_{N}\right]\right\} \\
|X[k]| & =\left|X\left[<-k>_{N}\right]\right| \\
\arg \{X[k]\} & =-\arg \left\{X\left[<-k>_{N}\right]\right\}
\end{array}
$$

- The following theorems are also very useful when computing the DFT of a lengthN sequence:

Length-N sequence	N-point DFT
$g[n]$	$G[k]$
$h[n]$	$H[K]$
$\alpha g[n]+\beta h[n]$	$\alpha G[k]+\beta H[k]$
$g\left[<n-n_{0}>_{N}\right]$	$W_{N}^{k n_{0}} G[k]$
$W_{N}^{-k{ }^{-} n} g[n]$	$G\left[<k-k_{0}>_{N}\right]$
$g[n] \otimes h[n]$	$G[k] H[k]$
$g[n] h[n]$	$\frac{1}{N} G[k] \otimes N H[k]$

- The Parseval's relation can be also useful, specially when we want to compute the energy of a sequence $g[n]$ that has a DFT $G[k]$:

$$
\sum_{n=0}^{N-1}|g[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|G[k]|^{2}
$$

- The circular convolution of two sequences $g[n]$ and $h[n]$ can be computed using the DFT:

$$
\left.\begin{array}{lll}
g[n] & \stackrel{D F T}{\rightarrow} & G[k] \\
h[n] & \xrightarrow[\rightarrow]{D F T} & H[k]
\end{array}\right\} \Longrightarrow g[n] \stackrel{N}{\otimes} h[n]=\operatorname{IDFT}\{G[k] H[k]\}
$$

- The linear convolution of a length- L_{x} sequence $x[n]$ and a length- L_{y} sequence $y[n]$ can also be computed using the DFT:

$$
x[n] \otimes y[n]=x[n] \stackrel{N}{\otimes} y[n]=\operatorname{IDFT}\left\{\operatorname{DFT}_{N}\{x[n]\} \operatorname{DFT}_{N}\{x[n]\}\right\}
$$

where $N=L_{x}+L_{y}-1$.

- The DFTs of two length- N real sequences $g[n]$ and $h[n]$ can be computed using the DFT of a single complex sequence $x[n]=g[n]+j h[n]$:

$$
\left.\begin{array}{rll}
g[n] & \xrightarrow{D F T} & G[k] \\
h[n] & \xrightarrow[\rightarrow]{D F T} & H[k] \\
x[n] & \xrightarrow[\rightarrow]{D F T} & X[k]
\end{array}\right\} \Longrightarrow\left\{\begin{aligned}
G[k] & =\frac{1}{2}\left[X[k]+X^{*}\left[<-k>_{N}\right]\right] \\
H[k] & =\frac{1}{2 j}\left[X[k]-X^{*}\left[<-k>_{N}\right]\right]
\end{aligned}\right.
$$

