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Given:

X(z) =
2− 9

4z
−1 − 5

2z
−2 + 59

16z
−3 − 3

2z
−4 + 3

16z
−5

1− 5
4z

−1 + 1
2z

−2 − 1
16z

−3

having a ROC 1
2 > |z| > 1

4 , find the inverse Z transform (Hint: X(14 ) = ∞).

SOLUTION:

NOTE: If during the exam you have to invert a rational Z-transform having
as denominator a polynomial in z−1 of order N > 2 (like in this case) you
will have as hint the value of at least N − 2 poles. The reason is that finding
the roots of a polynomial of order greater than 2 can be quite tricky without
the help of MATLAB or a similar mathematical software.

In order to invert the given Z-transform we have to manipulate the expres-
sion of X(z) so that it becomes a linear combination of terms like those in
Table 1.

Because the order of the denominator N = 3 is not greater than the order of
the numerator (M = 5) the first thing that we could do is to express X(z)
as:
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Sequence Z-transform ROC

δ[n] 1 ∀z

αnµ[n] 1
1−αz−1 |z| > |α|

−(α)nµ[−n− 1] 1
1−αz−1 |z| < |α|

nαnµ[n] αz−1

(1−αz−1)2 |z| > |α|

−nαnµ[−n− 1] αz−1

(1−αz−1)2
|z| < |α|

Table 1: Common Z-transform pairs.

X(z) =
B(z)

A(z)
= Q(z) +

R(z)

A(z)
(1)

where Q(z) is the quotient and R(z) the remainder of the long division of
B(z) into A(z). An alternative possibility to using long division would be
to denote G(z) = 1

A(z) and express X(z) as:

X(z) = 2G(z)−
9

4
z−1G(z)−

5

2
z−2G(z)+

59

16
z−3G(z)−

3

2
z−4G(z)+

3

16
z−5G(z)

and then using the linearity and shifting property of the Z-transform we
could express the inverse Z-transform of X(z) in terms of the inverse Z-
transform of G(z), denoted below by g[n]:

x[n] = 2g[n]−
9

4
g[n− 1]−

5

2
g[n − 2] +

59

16
g[n − 3]−

3

2
g[n− 4] +

3

16
g[n− 5]

Since G(z) is a fraction that has a greater polynomial degree in the denom-
inator than in the numerator it can be inverted using the method of the
residuals. In our case, using the linearity and shifting properties will pro-
duce a very long and ugly expression of the sequence x[n]. Because of this,
we prefer performing the long division of B(z) into A(z):
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−3z−2 +1

− 1
16z

−3 + 1
2z

−2 − 5
4z

−1 + 1 3
16z

−5 −3
2z

−4 +59
16z

−3 −5
2z

−2 −9
4z

−1 +2
3
16z

−5 −3
2z

−4 +15
4 z

−3 −3z−2

− 1
16z

−3 +1
2z

−2 −9
4z

−1 +2
− 1

16z
−3 +1

2z
−2 −5

4z
−1 +1

−z−1 +1

So we obtained that:

Q(z) = 1− 3z−2

R(z) = 1− z−1

and then using Eq. 1:

X(z) = 1− 3z−2
︸ ︷︷ ︸

Q(z)

+
1− z−1

1− 5
4z

−1 + 1
2z

−2 − 1
16z

−3

︸ ︷︷ ︸

P (z)=B(z)
A(z)

(2)

the rational function P (z) is called a proper fraction because the order of the
denominator is greater than the order of the numerator. The term Q(z) is
already directly invertible (using the shifting property of the Z-transform):

q[n] = Z−1 {Q(z)} = Z−1
{
1− 3z−2

}
= δ[n]− 3δ[n − 2]

The fraction P (z) has to be further manipulated using fractional expansion
which first requires that we compute the poles of Q(z). The poles of Q(z) are
just the values of z that make Q(z) equal to infinity, which are the same as
the values of z that make the denominator A(z) equal to zero. Because A(z)
is a third order polynomial, it could be complicated to find its three roots
without a computer. However, we can use the hint given in the problem
description that says that p1 = 1

4 is one of those three roots. This means
that:

A(z) = (1−p1z
−1)(1−p2z

−1)(1−p3z
−1) ⇒ (1−p2z

−1)(1−p3z
−1) =

A(z)

1− p1
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So we use long division to obtain the result of dividing A(z) by (1− 1
4z

−1):

1
4z

−2 −z−1 +1

−1
4z

−1 + 1 − 1
16z

−3 +1
2z

−2 −5
4z

−1 +1
− 1

16z
−3 +1

4z
−2

1
4z

−2 −5
4z

−1 +1
1
4z

−2 −z−1 +1
−1

4z
−1 +1

−1
4z

−1 +1
0

As expected, the remainder of the division is zero and we can write that:

A(z)

1− p1
= (1− p2z

−1)(1− p3z
−1) =

1

4
z−2 − z−1 + 1

So p1 and p2 can be easily obtained by finding the roots of the second order
polynomial 1

4z
−2 − z−1 + 1, which happen to be: p2 = p3 =

1
2 . Now we can

rewrite the term P (z) in Eq. 2 as:

P (z) =
1− z−1

1− 5
4z

−1 + 1
2z

−2 − 1
16z

−3
=

1− z−1

(1− 1
2z

−1)2(1− 1
4z

−1)

When we get an expression like the one above we say that we have two
poles. One of them is simple (p1 = 1

4) and the other is multiple (p2 = 1
2)

with multiplicity equal to 2. Now can use the method of the residuals to
rewrite P (z) as:

P (z) =
a

(1− 1
4z

−1)
+

b1

(1− 1
2z

−1)
+

b2

(1− 1
2z

−1)2
(3)

where a is the residual corresponding to the single pole p0 =
1
4 and therefore

is obtained with the formula:

a =
[
(1− p1z

−1)P (z)
]∣
∣
z=p1

=
1− z−1

(1− 1
2z

−1)2

∣
∣
∣
∣
∣
z= 1

4

= −3
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while the residuals b1 and b2 correspond to the pole p2 =
1
2 with multiplicity

L = 2 and, therefore, have to be obtained using the following formula:

bi =
1

(L− i)!(−p)L−i

[
dL−i

d(z−1)L−i

[
(1− piz

−1)LP (z)
]
]

z=p

where p is the value of the pole, L is the multiplicity and dk

d(z−1)k
denotes

derivative of order k with respect to variable z−1. So, in our case we have
that:

b2 =
[
(1− p2)

2P (z)
]

z=p2
=

[

1− z−1

1− 1
4z

−1

]

z= 1
2

= −2

b1 =
1

(−1
2)

[
d

d(z−1)

[
(1− p2)

2P (z)
]
]

z=p2

= −2

[

−1

1− 1
4z

−1
+

1− z−1

4(1 − 1
4z

−1)2

]

z= 1
2

= 6

So using the fractional expansion of P (z) in Eq. 3 we can write Eq. 2 as:

X(z) = 1− 3z−2 −
3

(1− 1
4z

−1)
+

6

(1− 1
2z

−1)
−

2

(1− 1
2z

−1)2
(4)

Now X(z) can be directly inverted using the properties of the Z-transform
and the elementary Z-transform pairs in Table 1. First:

Zinv
{
1− 3z2

}
= δ[n]− 3δ[n − 3]

where Zinv denotes inverse Z transform. Then, because the ROC of X(z) is
lower-bounded by the pole p1 =

1
4 the inverse of the following term must be

a causal sequence:

Zinv

{

−3

(1− 1
4z

−1)

}

= −3

(
1

4

)n

µ[n]
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By contrary, the double pole p2 = 1
2 defines the upper bound of the ROC

which means that the inverse of the last two terms in Eq. 4 must be an
anticausal sequence:

Zinv

{

6

(1− 1
2z

−1)

}

= −6

(
1

2

)n

µ[−n− 1]

and by the shifting property of the Z-transform we have that:

Zinv

{

−2

(1− 1
2z

−1)2

}

= −4z · Zinv







z
1
2z

−1

(1− 1
2z

−1)2
︸ ︷︷ ︸

V (z)







= −4v[n + 1]

where:

v[n] = Zinv

{
1
2z

−1

(1− 1
2z

−1)2

}

= −n

(
1

2

)n

µ[−n− 1]

so then:

Zinv

{

−2

(1− 1
2z

−1)2

}

= −4v[n+ 1] = 4(n + 1)

(
1

2

)(n+1)

µ[−n− 2]

and putting all the terms together we reach the result:

x[n] = δ[n]−3δ[n−3]−3

(
1

4

)n

µ[n]−6

(
1

2

)n

µ[−n−1]+2(n+1)

(
1

2

)n

µ[−n−2]
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