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having a ROC £ > |z| > %, find the inverse Z transform (Hint: X () = o0).

SOLUTION:

NOTE: If during the exam you have to invert a rational Z-transform having
as denominator a polynomial in z=% of order N > 2 (like in this case) you
will have as hint the value of at least N — 2 poles. The reason is that finding
the roots of a polynomial of order greater than 2 can be quite tricky without
the help of MATLAB or a similar mathematical software.

In order to invert the given Z-transform we have to manipulate the expres-
sion of X (z) so that it becomes a linear combination of terms like those in
Table 1.

Because the order of the denominator N = 3 is not greater than the order of
the numerator (M = 5) the first thing that we could do is to express X(z)
as:
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Table 1: Common Z-transform pairs.
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where Q(z) is the quotient and R(z) the remainder of the long division of
B(z) into A(z). An alternative possibility to using long division would be
to denote G(z) = ﬁ and express X (z) as:
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and then using the linearity and shifting property of the Z-transform we
could express the inverse Z-transform of X(z) in terms of the inverse Z-
transform of G(z), denoted below by g[n]:

oln] = 29ln] — Z9ln — 1] = 2gln 2|+ 23gln — 3] = Sgln— 4] + ~gln — 5

Since G(z) is a fraction that has a greater polynomial degree in the denom-
inator than in the numerator it can be inverted using the method of the
residuals. In our case, using the linearity and shifting properties will pro-
duce a very long and ugly expression of the sequence z[n]|. Because of this,
we prefer performing the long division of B(z) into A(z):
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So we obtained that:
Q(z) = 1-3272
R(z) = 1—-271
and then using Eq. 1:
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the rational function P(z) is called a proper fraction because the order of the
denominator is greater than the order of the numerator. The term Q(z) is
already directly invertible (using the shifting property of the Z-transform):

qln) = Z271{Q(z)} =z} {1- 3z_2} = d[n] — 30[n — 2]

The fraction P(z) has to be further manipulated using fractional expansion
which first requires that we compute the poles of Q(z). The poles of Q(z) are
just the values of z that make Q(z) equal to infinity, which are the same as
the values of z that make the denominator A(z) equal to zero. Because A(z)
is a third order polynomial, it could be complicated to find its three roots
without a computer. However, we can use the hint given in the problem
description that says that p; = + is one of those three roots. This means
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that:
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So we use long division to obtain the result of dividing A(z) by (1 — 1z71):
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As expected, the remainder of the division is zero and we can write that:
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So p1 and py can be easily obtained by finding the roots of the second order
polynomial %2_2 — 271 4+ 1, which happen to be: py = p3 = % Now we can
rewrite the term P(z) in Eq. 2 as:
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When we get an expression like the one above we say that we have two
poles. One of them is simple (p; = %) and the other is multiple (py = %)

with multiplicity equal to 2. Now can use the method of the residuals to
rewrite P(z) as:
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where a is the residual corresponding to the single pole pg = i and therefore
is obtained with the formula:

0= [0-n PO, = G| =



while the residuals b; and by correspond to the pole py = % with multiplicity
L = 2 and, therefore, have to be obtained using the following formula:
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where p is the value of the pole, L is the multiplicity and % denotes

derivative of order k with respect to variable z~!. So, in our case we have
that:
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So using the fractional expansion of P(z) in Eq. 3 we can write Eq. 2 as:
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X(z) =1-327" - (I—7h)  (I—%7h) (1—4271)?

Now X(z) can be directly inverted using the properties of the Z-transform
and the elementary Z-transform pairs in Table 1. First:

Z™ {1 —32%} = d[n] — 38[n — 3]

where Z™ denotes inverse Z transform. Then, because the ROC of X(z) is
lower-bounded by the pole p; = % the inverse of the following term must be
a causal sequence:
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By contrary, the double pole ps = % defines the upper bound of the ROC
which means that the inverse of the last two terms in Eq. 4 must be an
anticausal sequence:
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and putting all the terms together we reach the result:
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