Inverse Z transform: Example 2 (complex poles)

Germán Gómez-Herrero, http://germangh.com

February 3, 2013

Given the following system function of a causal LTI system:

$$
\begin{equation*}
H(z)=\frac{z^{-3}}{\left(1-2 z^{-3}\right)\left(1-0.5 z^{-1}\right)} \tag{1}
\end{equation*}
$$

find the impulse response of the system.

SOLUTION:

The denominator of $H(z)$ is a fourth order polynomial, which means that it will have four roots, i.e. our system function has four poles. Obvioulsy, one pole is located in $p_{1}=0.5$. The poles p_{2}, p_{3} and p_{4} are the roots of the polynomial $\left(1-2 z^{-3}\right)$. Finding the roots of third order polynomial can be tricky but in this case, we can easily find one of its roots (that is pole p_{2}):

$$
1-2 z^{-3}=0 \Rightarrow z^{-3}=\frac{1}{2} \Rightarrow p_{2}=(2)^{\frac{1}{3}}=\sqrt[3]{2}
$$

and therefore, we can factorize the term $1-2 z^{-3}$ as:

$$
\left(1-2 z^{-3}\right)=\left(1-\sqrt[3]{2} z^{-1}\right) Q(z)
$$

where $Q(z)=\frac{\left(1-2 z^{-3}\right)}{\left(1-\sqrt[3]{2} z^{-1}\right)}$ must be a second-order polynomial. In order to find $Q(z)$ we use long division:

$$
\begin{aligned}
& -\sqrt[3]{2} z^{-1}+1 \\
& -\sqrt[3]{2} z^{-1}+1 \\
& 0
\end{aligned}
$$

As expected, the remainder of the division is zero and $Q(z)=\sqrt[3]{4} z^{-2}+$ $\sqrt[3]{2} z^{-1}+1$ is a second degree polynomial. Now, we can easily find the two roots of $Q(z)$, which will correspond to the two remaining poles p_{3} and p_{4}. By making the variable change $x=z^{-1}$ we find that:

$$
\sqrt[3]{4} x^{2}+\sqrt[3]{2} x+1=0 \Rightarrow x=\frac{-\sqrt[3]{2} \pm j \sqrt{3} \sqrt[6]{4}}{2 \sqrt[3]{4}}
$$

and then by reversing the variable change $\left(z=x^{-1}\right)$ we obtain that the two poles that we were looking for are:

$$
\begin{aligned}
& p_{3}=\frac{2 \sqrt[3]{4}}{-\sqrt[3]{2}+\sqrt{3} \sqrt[6]{4}}=-0.63-1.09 j \\
& p_{4}=\frac{2 \sqrt[3]{4}}{-\sqrt[3]{2}-j \sqrt{3} \sqrt[6]{4}}=-0.63+1.09 j
\end{aligned}
$$

Always, when a fractional Z-transform has complex poles they will be in conjugate pairs, i.e. $p_{4}=p_{3}^{*}$ in this case. So we can write the system function in Eq. 1 as:
$H(z)=\frac{z^{-3}}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)\left(1-p_{3} z^{-1}\right)\left(1-p_{3}^{*} z^{-1}\right)} \quad R O C \equiv|z|>\sqrt[3]{2}$

Because the system is causal, the ROC of $H(z)$ must be the region outside the circunference in which the largest (in absolute value) pole is located. Now, using fractional expansion:

$$
H(z)=\frac{A}{1-p_{1} z^{-1}}+\frac{B}{1-p_{2} z^{-1}}+\frac{C}{1-p_{3} z^{-1}}+\frac{C^{*}}{1-p_{3}^{*} z^{-1}}
$$

where $p_{1}=0.5, p_{2}=\sqrt[3]{2}=1.26$ and $p_{3}=-0.63-1.09 j$ and the residuals are:

$$
\begin{align*}
& A=\left.\left[\left(1-p_{1} z^{-1}\right) H(z)\right]\right|_{z=p_{1}} \\
& B=-0.53 \tag{2}\\
& C=\left.\left[\left(1-p_{2} z^{-1}\right) H(z)\right]\right|_{z=p_{2}}=0.28 \\
&\left.C\left[\left(1-p_{3} z^{-1}\right) H(z)\right]\right|_{z=p_{3}}=0.13+0.04 j
\end{align*}
$$

Now we can finally invert $H(z)$ taking into account that all the poles correspond to causal components of the system:

$$
\begin{equation*}
h[n]=(0.5)^{3} \cdot\left[A\left(p_{1}\right)^{n}+B\left(p_{2}\right)^{n} \mu[n]+C\left(p_{3}\right)^{n} \mu[n]+C^{*}\left(p_{3}^{*}\right)^{n} \mu[n]\right] \tag{3}
\end{equation*}
$$

Exercise: try to express the equation above using only real terms. You can do it by writting C and p_{3} in polar form.

