Sums of some infinite series

Germán Gómez-Herrero, http://germangh.com

February 3, 2013

Geometric series. If $a \in \Re$ and $r \in \Re$, a geometric series $\left\{x_{n}\right\}=\left\{a, a r, a r^{2}, \ldots, a r^{n}, \ldots\right\}$ converges if and only if $|r|<1$ and then its sum is:

$$
\begin{equation*}
\sum_{n=0}^{\infty} x_{n}=\sum_{n=0}^{\infty} a r^{n}=\lim _{n \rightarrow \infty} a \frac{1-r^{n+1}}{1-r}=\frac{a}{1-r} \tag{1}
\end{equation*}
$$

Telescopic series. Given a series $\left\{a_{n}\right\}$ we say that the series $\left\{x_{n}\right\}=\left\{a_{n}-\right.$ $\left.a_{n+1}\right\}$ is a telescopic series. Then, $\left\{x_{n}\right\}$ is convergent if and only if $\lim _{n \rightarrow \infty} a_{n}$ is finite. In that case, the sum of $\left\{x_{n}\right\}$ is:

$$
\begin{equation*}
\sum_{n=1}^{\infty} x_{n}=\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)=a_{1}-\lim _{n \rightarrow \infty} a_{n} \tag{2}
\end{equation*}
$$

Arithmetic-geometric series. Given $a, b, r \in \Re$ we say that the series $\left\{x_{n}\right\}$ is arithmetic-geometric if $\left\{x_{n}\right\}=\left\{a,(a+b) r,(a+2 b) r^{2}, \ldots,(a+n b) r^{n}, \ldots\right\}$. Such series are convergent if and only if $|r|<1$ and, in that case, their sum is:

$$
\begin{equation*}
\sum_{n=0}^{\infty} x_{n}=\sum_{n=0}^{\infty}(a+n b) r^{n}=\frac{a(1-r)+b r}{(1-r)^{2}} \tag{3}
\end{equation*}
$$

Hypergeometric series. We say that a series $\left\{x_{n}\right\}$ is hypergeometric if:

$$
\begin{equation*}
\frac{x_{n+1}}{x_{n}}=\frac{a n+b}{a n+c} \tag{4}
\end{equation*}
$$

where $a, b, c \in \Re$ and $a \neq 0$. This type of series converges if and only if $\frac{(c-b)}{a}>1$ and, in that case, its sum is:

$$
\begin{equation*}
\sum_{n=1}^{\infty} x_{n}=\frac{-x_{1} c}{a+b-c} \tag{5}
\end{equation*}
$$

