EXERCISE 4 - SOLUTIONS

SGN-1156 Signal Processing Techniques
http://www.cs.tut.fi/courses/SGN-1156
Tampere University of Technology
Germán Gómez-Herrero, http://germangh.com

November 25, 2009

PROBLEM 1 (problem 5.21 from the book): Let $x[n], 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k], 0 \leq k \leq N-1$. Determine the N-point DFTs of the following length $-N$ sequences in terms of $X[k]$:
(a) $w[n]=\alpha x\left[\left\langle n-m_{1}\right\rangle_{N}\right]+\beta x\left[\left\langle n-m_{2}\right\rangle_{N}\right]$, where m_{1} and m_{2} are positive integers less than N.
(b) $g[n]= \begin{cases}x[n] & \text { for } n \text { even } \\ 0 & \text { for } n \text { odd }\end{cases}$
(c) $y[n]=x[n] \stackrel{N}{\otimes} x[n]$.

SOLUTION:

(a)

Using the circular time-shifting property from Table 5.3 of the book:

$$
W[k]=\left(\alpha W_{N}^{m_{1} k}+\beta W_{N}^{m_{2} k}\right) X[k]
$$

(b)

$$
g[n]=\left(\frac{1}{2}+(-1)^{n}\right) x[n]=\left(\frac{1}{2}+W_{N}^{\frac{N n}{2}}\right) x[n]
$$

So using the circular frequency-shifting property from Table 5.3 of the book:

$$
G[k]=\frac{1}{2} X[k]+\frac{1}{2} X\left[\left\langle k-\frac{N}{2}\right\rangle_{N}\right]
$$

(c)

Using the N-point circular convolution property from Table 5.3 of the book:

$$
Y[k]=X[k] X[k]=X^{2}[k]
$$

PROBLEM 2 (problem 5.23 from the book): Let $x[n], 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k], 0 \leq k \leq N-1$. Determine the N-point inverse DFTs of the following length $-N$ DFTs in terms of $x[n]$:
(a) $W[k]=\alpha X\left[\left\langle k-m_{1}\right\rangle_{N}\right]+\beta x\left[\left\langle k-m_{2}\right\rangle_{N}\right]$, where m_{1} and m_{2} are positive integers less than N.
(b) $G[k]= \begin{cases}X[k] & \text { for } k \text { even } \\ 0 & \text { for } k \text { odd }\end{cases}$
(c) $Y[k]=X[k] \stackrel{N}{\otimes} X[k]$.

SOLUTION:

(a)

Using the circular frequency-shifting property from Table 5.3 of the book:

$$
w[n]=\left(\alpha W_{N}^{-m_{1} n}+\beta W_{N}^{-m_{2} n}\right) x[n]
$$

(b)

$$
G[k]=\left(\frac{1}{2}+(-1)^{n}\right) X[k]=\left(\frac{1}{2}+W_{N}^{\frac{N k}{2}}\right) X[k]
$$

So using the circular time-shifting property from Table 5.3 of the book:

$$
g[n]=\frac{1}{2} x[n]+\frac{1}{2} x\left[\left\langle n-\frac{N}{2}\right\rangle_{N}\right]
$$

(c)

Using the modulation property from Table 5.3 of the book:

$$
y[n]=N x[n] x[n]=N x^{2}[n]
$$

PROBLEM 3 (problem 5.42 from the book): A 126-point DFT $X[k]$ of a realvalued sequence $x[n]$ has the following DFT samples: $X[0]=12.8+j \alpha, X[13]=$ $-3.7+j 2.2, X\left[k_{1}\right]=9.1-j 5.4, X\left[k_{2}\right]=6.3+j 2.3, X[51]=-j 1.7, X[63]=13+j \beta$, $X\left[k_{3}\right]=\gamma+j 1.7, X[79]=6.3+j \delta, X[108]=\epsilon+j 5.4, X\left[k_{4}\right]=-3.7-j 2.2$. The remaining DFT samples are assumed to be equal to zero.
(a) Determine the values of the indices k_{1}, k_{2}, k_{3} and k_{4}.
(b) Determine the values of $\alpha, \beta, \gamma, \delta$, and ϵ.
(c) What is the DC value of $\{x[n]\}$?
(d) Determine the expression for $\{x[n]\}$ without computing the IDFT.
(e) What is the energy of $\{x[n]\}$?

SOLUTION:

(a)

Since $x[n]$ is real-valued we have the symmetry property $X[k]=X^{*}\left[\langle-k\rangle_{N}\right]$. This means that if $X\left[k_{1}\right]=9.1-j 5.4$ then $X\left[\left\langle-k_{1}\right\rangle_{N}\right]=9.1+j 5.4$. From the given values of $X[k]$ it is clear that $\left\langle-k_{1}\right\rangle_{N}=N-k_{1}=108 \Rightarrow k_{1}=126-108=18$. Similarly we get:

$$
\left\langle-k_{2}\right\rangle_{N}=N-k_{2}=79 \Rightarrow k_{2}=126-79=47
$$

$$
\begin{aligned}
& \left\langle-k_{3}\right\rangle_{N}=N-k_{3}=51 \Rightarrow k_{3}=126-51=75 \\
& \left\langle-k_{4}\right\rangle_{N}=N-k_{4}=13 \Rightarrow k_{4}=126-13=113
\end{aligned}
$$

(b)

Again, using the symmetry $X[k]=X^{*}\left[\langle-k\rangle_{N}\right]$ we have that $X[0]=X^{*}[0] \Rightarrow \operatorname{Im}\{X[0]\}=$ $0 \Leftrightarrow \alpha=0$. Similarly:

$$
\begin{aligned}
X[63] & =13+j \beta=X^{*}\left[\langle-63\rangle_{N}\right]=X^{*}[N-63]=X^{*}[63] \Leftrightarrow \operatorname{Im}\{X[63]\}=0 \Leftrightarrow \beta=0 \\
X[75] & =\gamma+j 1.7=X^{*}\left[\langle-75\rangle_{N}\right]=X^{*}[N-75]=X^{*}[51]=j 1.7 \Leftrightarrow \gamma=0 \\
X[79] & =6.3+j \delta=X^{*}\left[\langle-79\rangle_{N}\right]=X^{*}[N-79]=X^{*}[47]=6.3-j 2.3 \Leftrightarrow \delta=-2.3 \\
X[108] & =\epsilon+j 5.4=X^{*}\left[\langle-108\rangle_{N}\right]=X^{*}[N-108]=X^{*}[18]=9.1+j 5.4 \Leftrightarrow \epsilon=9.1
\end{aligned}
$$

(c)

The DC value is $X[0]=12.8$
(d)

$$
\begin{aligned}
x[n]= & \frac{1}{126} \sum_{k=0}^{125} X[k] W_{126}^{-k n}=\frac{1}{126}\left(X[0]+X[63] W_{126}^{-63 n}+2 \operatorname{Re}\{X[13]\} W_{N}^{-13 n}+\right. \\
& 2 \operatorname{Re}\{X[18]\} W_{N}^{-18 n}+2 \operatorname{Re}\{X[47]\} W_{N}^{-47 n}+2 \operatorname{Re}\{X[75]\} W_{N}^{-75 n}+ \\
& \left.+2 \operatorname{Re}\{X[113]\} W_{N}^{-113 n}\right)
\end{aligned}
$$

(e)

$$
E_{x}=\sum_{n=1}^{125}|x[n]|^{2}=\frac{1}{126} \sum_{k=0}^{125}|X[k]|^{2}=5.767
$$

