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NOTE: This solutions are explained in great detail to be sure that you under-
stand every step taken. When you do your exam you SHOULD NOT go into
so much detail. It is enough to show the major intermidiate steps.

QUESTION 1 (5 point): Consider the following interconnection of linear
shift-invariant systems:

h
1
[n]

h
3
[n]

h
2
[n]

+ +

x[n] y[n]
+ +

-+

(a) (3 points) Express the overall frequency response of the overall system
H(ejω) in terms of the frequency responses of the subsystems H1(e

jω),
H2(e

jω), and H3(e
jω).

(b) (2 points) Determine the frequency response H(ejω) and the impulse
response h[n] of the overall system if h1[n] = (0.5)nµ[n − 3], h2[n] =
δ[n] + 2δ[n − n2], and h3[n] = −δ[n− 1].
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SOLUTION:

(a)

The first step is to represent the given system in frequency domain and to
introduce new intermidiate variables in any interconnection between diagram
elements. This is shown below:

H
1

H
3

H
2

+ +

X Y
+ +

-+

A

B

C

D

For simplicity we have omitted all the terms (ejω) in the diagram above. Unless
otherwise stated uppercase letters will denote Fourier-domain variables and
lower-case letters time-domain ones. We can now write all the system equations
in Fourier domain:

Y = A−B (1)

A = D + C (2)

B = H2 · C (3)

C = H3 · Y (4)

D = H1 ·X (5)

The overall frequency response is defined as H = Y
X
. Therefore, we need to

combine the five equations above into a single one that has only X and Y as
unknowns. Combining Eqs. 1, 2 and 3 we obtain:

Y = D + (1−H2)C (6)

Now combining Eq. 6 with Eqs. 4 and 5 we get to:

Y = H1 ·X + (1−H2)H3Y (7)

2



which has only two unknowns: X and Y . Reorganizing Eq. 7 we finally obtain
the overall frequency response of the system:

Y =
H1

1 +H3(H2 − 1)
X ⇒ H(ejω) =

Y (ejω)

X(ejω)
=

H1(e
jω)

1 +H3(ejω)(H2(ejω)− 1)
(8)

Finding the expression above: 3 exam points.

Hint for future exams: Do not attempt to solve this type of problems by finding
directly a time-domain expression relating y[n] and x[n] and then transforming
such expression to the Fourier domain. This path is much more complex and
will most likely lead you to mistakes, specially when feedback loops are involved.

(b)

In order to determine the overall frequency response we just need to find the
frequency response of the three sub-systems involved: h1[n], h2[n] and h3[n].
For this, recall that the Z-transform of the sequence g[n] = (0.5)nµ[n] is:

g[n] = (0.5)nµ[n]
Z−→ G(z) =

1

1− 0.5z−1
ROC ≡ |z| > 0.5 (9)

Since h1[n] = (0.5)nµ[n− 3] = (0.5)3(0.5)n−3µ[n− 3], its Z-transform is:

H1(z) = (0.5)3z−3G(Z) = (0.5)3z−3 1

1− 0.5z−1
ROC ≡ |z| > 0.5 (10)

Now, because the ROC of H1(z) includes the unit circle, the Fourier transform
of h1[n] exists and takes the value:

H1(e
jω) = H1(z)|z=ejω = (0.5)3e−j3ω 1

1− 0.5e−jω
(11)

The Fourier transforms of h2[n] and h3[n] are trivial:
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H2(e
jω) = 1 + 2e−j2ω (12)

H3(e
jω) = −e−jω (13)

So we can finally write that the overall frequency response of the system is:

H(ejω) = (0.5)3
e−j3ω

(1− 2e−j3ω)(1 − 0.5e−jω)
(14)

Finding the expression above: 1 exam point.

Finding the impulse response of the system requires transforming Eq. 14 to the
time-domain. This was a relatively difficult question that was intended only for
those students aiming at the highest grade. We start by transforming Eq. 14
to the Z-domain:

H(z) = (0.5)3
z−3

(1− 2z−3)(1 − 0.5z−1)
(15)

The denominator of H(z) is a fourth order polynomial, which means that it will
have four roots, i.e. our system function has four poles. Obvioulsy, one pole is
located in p1 = 0.5. The poles p2, p3 and p4 are the roots of the polynomial
(1 − 2z−3). Finding the roots of third order polynomial can be tricky but in
this case, we can easily find one of its roots (that is pole p2):

1− 2z−3 = 0 ⇒ z−3 =
1

2
⇒ p2 = (2)

1

3 =
3
√
2

and therefore, we can factorize the term 1− 2z−3 as:

(1− 2z−3) = (1− 3
√
2z−1)Q(z)

where Q(z) = (1−2z−3)

(1− 3
√
2z−1)

must be a second-order polynomial. In order to find

Q(z) we use long division:
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3
√
4z−2 + 3

√
2z−1 +1

− 3
√
2z−1 + 1 −2z−3 +0z−2 +0z−1 +1

−2z−3 + 3
√
4z−2

− 3
√
4z−2 +0z−1 +1

− 3
√
4z−2 + 3

√
2z−1

− 3
√
2z−1 +1

− 3
√
2z−1 +1

0

As expected, the remainder of the division is zero and Q(z) = 3
√
4z−2+ 3

√
2z−1+

1 is a second degree polynomial. Now, we can easily find the two roots of Q(z),
which will correspond to the two remaining poles p3 and p4. By making the
variable change x = z−1 we find that:

3
√
4x2 +

3
√
2x+ 1 = 0 ⇒ x =

− 3
√
2± j

√
3 6
√
4

2 3
√
4

and then by reversing the variable change (z = x−1) we obtain that the two
poles that we were looking for are:

p3 = 2 3
√
4

− 3
√
2+j

√
3 6
√
4
= −0.63 − 1.09j

p4 = 2 3
√
4

− 3
√
2−j

√
3 6
√
4
= −0.63 + 1.09j

Always, when a fractional Z-transform has complex poles they will be in con-
jugate pairs, i.e. p4 = p∗3 in this case. So we can write the system function in
Eq. 15 as:

H(z) = (0.5)3
z−3

(1− p1z−1)(1− p2z−1)(1− p3z−1)(1− p∗3z
−1)

ROC ≡ |z| > 3
√
2

Because all the elements of the overall system are causal, the overall system
is also causal and, therefore, the ROC of H(z) must be the region outside the
circunference in which the largest (in absolute value) pole is located. Now,
using fractional expansion:
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H(z) = (0.5)3
[

A

1− p1z−1
+

B

1− p2z−1
+

C

1− p3z−1
+

C∗

1− p∗3z
−1

+

]

where p1 = 0.5, p2 =
3
√
2 = 1.26 and p3 = −0.63 − 1.09j and the residuals are:

A =
[
(1− p1z

−1)H(z)
]∣
∣
z=p1

= −0.53

B =
[
(1− p2z

−1)H(z)
]∣
∣
z=p2

= 0.28

C =
[
(1− p3z

−1)H(z)
]∣
∣
z=p3

= 0.13 + 0.04j

(16)

Now we can finally invertH(z) taking into account that all the poles correspond
to causal components of the system:

h[n] = (0.5)3 · [A(p1)n +B(p2)
nµ[n] + C(p3)

nµ[n] + C∗(p∗3)
nµ[n]] (17)

Describing the steps needed to reach the expression above: 1 exam point. Com-
puting the actual values of the residuals and the poles was not required.

Hints for future exams:

• Whenever the denominator of a irreducible fractional Z-transform is of
degree greater than 2 and/or there are complex poles performing the in-
verse Z-transform becomes more tedious so if you find this type of problem
in future exams leave it for the end, specially when there is only 1 exam
point at stake.

• You do not need to compute the actual values of the poles and/or the
residuals. It is enough to CLEARLY describe the process and leave indi-
cated the computations, as was mentioned in the solution to question 4 of
the second toy exam available in the course web-page.

• The expression in Eq. 17 can be re-written using only real terms. Although
this was not required in the exam you can try to do it as an exercise. You
can easily do it by expressing p3, p

∗
3, C, and C∗ in their polar form.

QUESTION 2 (6 point): A major problem in the recording of electro-
cardiograms (ECGs) is the appearance of unwanted 50-Hz interference in the
output. The causes of this power line interference include magnetic induction,
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displacement currents in the leads on the body of the patients, and equipment
interconnections. Assume that the bandwidth of the signal of interest is 1
KHz, that is Xa(f) = 0 |f | > 1000 Hz. The analog signal is converted into
a discrete-time signal with an ideal A/D converter operating using a sampling
frequency fs. The resulting signal x(n) = xa(nTs) is then processed with a
discrete-time system that is described by the difference equation:

y[n] = x[n] + ax[n− 1] + bx[n− 2]

The filtered signal, y(n), is then converted back into an analog signal using an
ideal D/A converter. Design a system for removing the 50-Hz interference by
specifying values for fs, a, and b so that a 50-Hz signal of the form will not
appear in the output of the D/A converter. (Hint: The interference will be
removed if the filter has a transfer function equal to zero for the corresponding
radian frequency).

SOLUTION:

To avoid aliasing the sampling period has to satisfy the Nyquist criterion: Ts ≤
5 · 10−4 seconds.

Giving a valid sampling rate: 2 points.

From the solution of problem 2 of classroom exercise 3 (available in the course
web-page) we can see that the inteference will be removed if:

a = −2 cos(ωǫ) (18)

b = 1 (19)

where ωǫ is the discrete-time frequency of the interference. That is, assuming
that we sampled at the Nyquist rate:

ωǫ = 50 · 2π · Ts = 0.05π

Expression of a and b: 4 points.
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Hint for future exams: This problem is identical to problem 2 of exercise 3
(see the course web-page). Very few students attending this exam managed to
solve this problem even though in the hints for the exam that were given in the
course web-page it was specifically said that you should check the solutions to
the problems of exercise 3. Next time you should really pay attention to the
hints!.

QUESTION 3 (5 points): Consider the system shown in the figure below:

C/D
x(t)

D/CH(ejω)

Ts Ts

y(t)

(a) (2 points) If x(t) is bandlimited to 10 KHz, what is the maximum value
of the sampling period that can be used to avoid aliasing?

(b) (3 points) Given the Fourier transform of x[n] is as shown on the left figure
below, it is desired to obtain y[n] with Fourier transform as shown on the
right figure below. Specify the impulse response h[n] of the discrete-time
system H(ejω). Hint: Use the frequency shift property of the Fourier
transform.

Ω

X(jΩ)

-2π103 2π103
Ω

Y(jΩ)

-2π103 2π103

SOLUTION:

(a)

Obviously the maximum value of the sampling period is determined by the
Nyquist criterion Ts <

1
2fmax

= 1
2·104 = 5 · 10−5 seconds.
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Giving the minimum sampling period: 2 points

(b)

Because it is not specifically said in part (b) that the sampling period of the
system has to be equal to that of part (a) we can just set the sampling frequency
of our system to Ts = 5 · 10−4. Then, the DTFT of the discrete-time sequence
x[n] looks like is shown in the figure below:

π

X(ejω)

-2π -π ω2π

Clearly, in order to obtain the desired output spectrum we need to shift the
DTFT above by π radians/second. In order to produce a frequency shift of ω0

radians/second in a given real sequence x[n] the only possibility is to multiply it
by a modulation sequence (one or more complex exponentials). In the simplest
case such modulation sequence is the complex sequence mc[n] = ejω0n, as told
by the shifting property of the Fourier transform. A better alternative would
be to use the real modulation sequence mr[n] =

1
2

(
ejω0n + e−jω0n

)
= cos(ω0n).

Because the input sequence x[n] is real its DTFT satifies the symmetry property
X(ejω) = X∗(e−jω). Thus, multiplying the real sequence x[n] by either mc[n]
or mr[n] has the same effect of shifting the DTFT of x[n] by ω0 radians/second.
Anyway, consider the case that we used mr[n]. Then the input-output relation-
ship of the required discrete-time system is:

y[n] = cos(ω0n) · x[n] = cos(πn) · x[n] = (−1)nx[n] (20)

So that the DTFT of y[n] will look like this:

π

Y(ejω)

-2π -π ω2π

And then, after the D/C converter, the Fourier transform of the analog signal
y(t) will just look just like the one given in the problem description.
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Reaching this point was enough for getting the 3 points. Actually we were very
flexible in the correction of this problem and just stating the frequency shifting
property of the DTFT was enough for getting 1 point.

The perfect solution goes just a bit further. The problem was asking us for
the impulse response of the discrete-time system described by the input-output
relationship in Eq. 20. It is obvious that such system is not time-invariant.
Therefore, the perfect answer was to say that because the required system is
time-variant its corresponding impulse response is also time-variant. That is
for the time-instant k the impulse response of the system is: hk[n] = (−1)kδ[n].
So for even time-instants the impulse response is heven[n] = δ[n] and for odd
time-instants the impulse response is hodd[n] = −δ[n].

NOTE: If you would have used the same sampling period as in part (a), that is
Ts = 5 · 10−5 then there would be a gap between the spectral aliases in X(ejω).
Thus the optimal discrete time system would have consisted of a downsampler
by a factor 10, the system described by Eq. 20 and an upsampler by a factor
10. This was a bit longer path but also completely valid.

QUESTION 4 (5 points): Calculate the convolution of the following three
sequences using the Z-transform:

x1[n] = 2nµ[n] (21)

x2[n] = δ[n] + 2δ[n − 1] (22)

x3[n] = δ[n]− 3δ[n + 1] (23)

SOLUTION:

Because the problem asks to use the Z-transform this means that we have to
find the convolution using the following relationship:

y[n] = x1[n]⊗ x2[n]⊗ x3[n] = Z−1 {X1(z)X2(z)X3(z)} (24)

First we compute the Z-transform of the three given sequences. This is a trivial
task using the table of Z-transform pairs in the summary of chapter 6:
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X1(z) = 1
1−2z−1 ROC ≡ |z| > 2

X2(z) = 1 + 2z−1 ROC ≡ z 6= 0
X3(z) = 1− 3z ROC ≡ z 6= ∞

(25)

So we need to invert the following Z-transform:

Y (z) =
(1 + 2z−1)(1− 3z)

1− 2z−1
=

−5− 3z + 2z−1

(1− 2z−1)
ROC ≡ |z| > 2 (26)

Reaching Eq. 26 was already granted 2 points.

Notice that this Z-transform is already directly invertible using the shifting
property of the Z-transform (without needing to compute residuals or long
division):

Y (z) = −5
1

1− 2z−1
︸ ︷︷ ︸

G(z)

−3z
1

1− 2z−1
︸ ︷︷ ︸

G(z)

+2z−1 1

1− 2z−1
︸ ︷︷ ︸

G(z)

So we finally obtain that:

y[n] = −5(2)nµ[n]− 3(2)n+1µ[n+ 1] + 2(2)n−1µ[n− 1] (27)

Reaching Eq. 27 was granted 3 points.

QUESTION 5 (3 points): Find the region of convergence of the Z-transform
of the following sequences:

(a) (1 point) xa[n] =
(
1
4

)n
µ[n] +

(
1
2

)2n
µ[−n]

(b) (1 point) xb[n] =

{
1 −15 ≤ n ≤ −5
0 otherwise

(c) (1 point) xc[n] = 2nµ[−n− 5]
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SOLUTION:

(a)

xa[n] =

(
1

4

)n

µ[n] +

(
1

2

)2n

µ[−n] =

(
1

4

)n

µ[n]

︸ ︷︷ ︸

ROC≡|z|< 1

4

+

(
1

4

)n

µ[−n]

︸ ︷︷ ︸

ROC≡|z|> 1

4

Obviously, the ROC of the causal and anti-causal components of xa[n] do not
overlap and therefore their intersection is empty. ThusXa(z) does not converge
for any value of z, i.e. ROC ≡ ∅

(b)

Because the sequence xb[n] is of finite duration its ROC must be all z-plane
except possibly z = 0 or z = ∞. Because the sequence is anti-causal its
Z-transform will contain only positive powers of z which means that it will
converge for z = 0 but not for z = ∞. Thus the ROC of this sequence is the
whole z-plane except z = ∞.

(c)

Using the formula of the Z-transform:

Xc(z) =

∞∑

n=−∞
xc[n]z

−n =

−5∑

n=−∞
2nz−n =

∞∑

n=5

2−nzn =

∞∑

n=5

(2−1z)n

The summatory above will converge only if |2−1z| < 1 which means that the
ROC must be |z| < 2.

You could have reached the same result using this alternative way:

xc[n] = 2nµ[−n− 5] = 2nµ[−(n+ 1 + 4)] = 2−4 2n+4µ[−(n+ 1 + 4)]
︸ ︷︷ ︸

−g[n+4]

So the z-transform of xc[n] will be:

Xc(z) = −2−4z4G(z)

12



which means that Xc(z) will not converge for z = ∞ nor for any value of z for
which G(z) does not converge. Using the Z-transform pairs table we know that
the ROC of g[n] = −2nµ[n− 1] is |z| < 2. Therefore, the ROC of Xc(z) must
be |z| < 2 ∩ z 6= ∞ ⇒ ROC ≡ |z| < 2.

QUESTION 6: A signal x[n] has been passed through a causal LTI system
given by the following difference equation:

y[n]−y[n−1]+
1

4
y[n−2] = 2x[n]−2x[n−1]− 11

4
x[n−2]+3x[n−3]− 3

4
x[n−4]

Find the impulse response of the system (4 points). Is the system stable (1
point)? Could x[n] by recovered from y[n] using a realizable filter (1 point)?

SOLUTION:

Using the shifting property of the Z-transform we easily obtain that:

H(z) =
Y (z)

X(z)
=

2− 2z−1 − 11
4 z

−2 + 3z−3 − 3
4z

−4

1− z−1 + 1
4z

−2
(28)

Clearly, we cannot invert H(z) directly because the numerator does not look
anything like (1− αz−1) or (1− αz−1)2. Therefore a valid approach would be
to use long division and subsequently the method of the residuals to express
H(z) as a linear combination of powers of z and terms having as denominator
either (1− αz−1) or (1− αz−1)2. We will explore this approach later.

However, because the denominator of our fractional Z-transform is of order 2
it is worth checking if its two roots are identical (i.e. if we have a double pole),
which would make the denominator of H(z) become (1− αz−1)2 with α equal
to the value of the double pole. Then H(z) would be directly invertible using
the shifting property of the Z-transform. To explore this possibility, we start by
finding the poles of H(z), that is, the roots of the polynomial 1− z−1 + 1

4z
−2.

To do this we make the variable change x = z−1 and solve:

1− x+
1

4
x2 = 0
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obtaining the solutions x1 = x2 = 2. Reversing the variable change we obtain
the roots of our polynomial in z−1 are z1 = z2 =

1
x1 = 1

2 . So we have obtained
that H(z) effectively has a double pole at z = 1

2 and therefore we can write
H(z) as:

H(z) =
Y (z)

X(z)
=

2− 2z−1 − 11
4 z

−2 + 3z−3 − 3
4z

−4

(1− 1
2z

−1)2
ROC ≡ |z| > 1

2
(29)

Notice that we know that the ROC of H(z) is |z| > 1
2 because it is said in the

problem description that the system is causal. From here we can already use
the table of Z-transform pairs and the shifting property of the Z-transform to
obtain an expression of h[n]. Recall from the table of Z-transform pairs:

g[n] = n

(
1

2

)n

µ[n] ⇒ G(z) =
1
2z

−1

(1− 1
2z

−1)2
(30)

Clearly we can write the expression of H(z) in Eq. 29 as:

H(z) = 4zG(z) − 4G(z) − 11

2
z−1G(z) + 6z−2G(z)− 3

2
z−3G(z)

And therefore:

h[n] = 4(n+ 1)12
(n+1)

µ[n+ 1]− 4n
(
1
2

)n
µ[n]− 11

2 (n− 1)
(
1
2

)(n−1)
µ[n− 1]

+6(n− 2)
(
1
2

)(n−2)
µ[n− 2]− 3

2(n− 3)
(
1
2

)(n−3)
µ[n− 3]

(31)

Reaching Eq. 31 or an equivalent one was granted 4 points.

Although this was not required in the exam, one can operate a bit more in
order to express Eq. 31 in this more compact form:

h[n] = 2δ[n] − 6δ[n − 2] + (1− n)

(
1

2

)n

µ[n− 3] (32)

There was an alternative way of reaching the final solution. Because the nu-
merator of H(z) in Eq. 28 is not of lower degree than the denominator we could
have used long-division to express H(z) as:
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H(z) = 1− 3z−2 +
1− z−1

(
1− 1

2z
−1

)2 (33)

Then we can express H(z) as:

H(z) = 1− 3z−2 + 2zG(z) − 2G(z)

with G(z) =
1

2
z−1

(1− 1

2
z−1)2

. Thus the inverse Z-transform will be:

h[n] = δ[n]− 3δ[n − 2] + 2

(
1

2

)(n+1)

µ[n+ 1]− 2

(
1

2

)n

µ[n] (34)

which, operating a bit can be rewriten exactly as in Eq. 32.

Is the system stable?

There are two alternative ways of anwering this question:

• Yes because the ROC of H(z) (|z| > 1
2 ) includes the unit circle.

• Yes because the system is causal and all the poles of the system function
are inside the unit circle.

Justifying properly your answer: 1 point

Could x[n] be recovered from y[n] using a realizable filter?

We could recover x[n] from y[n] by passing y[n] through a filter having as system
function H−1(z) = 1

H(z) . Therefore, what they are asking here is whether the

system H−1(z) is realizable, that is whether it is causal and stable.

The zeros of H(z) become poles in 1
H(z) . From Eq. 33 we can see that H(z) has

a double zero at z = 0 and a zero at z = 1. Therefore, H−1(z) has a double
pole at z = 0 and a pole at z = 1. Because the pole at z = 1 is not stricly
inside the unit circle, the system H−1(z) will be unstable. Thus, x[n] cannot
be recovered from y[n] using a realizable filter.

Justifying properly your answer: 1 point
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