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QUESTION 1 (3 points): Consider a system with the following input-output rela-
tionship:

y[n] =
1

x[n]
+ x[n− 1]

where x[n] is the input to the system and y[n] is the system’s output. Is this system
linear? (1 point) Is it time-invariant? (1 point). Could you determine the ouput of the
system to an arbitrary input by using only the system’s impulse response? (1 point).
Justify your answers.

SOLUTION:

Is the system linear?

Consider the input sequence a[n] = αx1[n] + βx2[n] with α and β being two arbitrary
scalar and x1[n] and x2[n] being two arbitrary sequences. Then, if the system is linear,
it must be satisfy that the output to a[n] is ya[n] = αy1[n] + βy2[n] where y1[n] and
y2[n] are the outputs of the system to the inputs x1[n] and x2[n], respectively. We can
easily check that this system does not satisfy this condition and therefore the system
is NOT linear:

ya[n] = 1
α·x1[n]+β·x2[n]

+ α · x1[n− 1] + β · x2[n− 1]

6= α ·

(
1

x1[n]
+ x1[n− 1]

)

︸ ︷︷ ︸

y1[n]

+β ·

(
1

x2[n]
+ x2[n− 1]

)

︸ ︷︷ ︸

y2[n]
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Is the system time-invariant?

The system will be time invariant if a delayed input x[n−τ ] produces a delayed output
y[n− τ ]. Let us denote by yτ [n] the output produced by x[n− τ ]. Then we can easily
check that:

yτ [n] =
1

x[n− τ ]
+ x[n− 1− τ ] = y[n− τ ]

so the system is time-invariant.

Is the system’s impulse response enough for determining the output of the
system to an arbitrary input?

No. It would be enough only if the system would be linear and time-invariant (LTI)
but this system is not linear.

QUESTION 2 (5 points): Consider the discrete-time sequence:

x[n] = cos
(nπ

5

)

Find two different continuous-time signals x(t) that would produce this sequence when
sampled at a frequency of fs = 10Hz (Hint: consider the cases of sampling above and
below the Nyquist rate).

SOLUTION:

This exercise is solved in the same way as question number 2 from the second toy exam

available in the course web-page.

Clearly, the given sequence is equivalent to these other sequences:

x[n] = cos
(

n
π

5

)

= cos (nω0) = cos (n(ω0 + 2π · k)) = cos(nωk)

where k is any integer, i.e. k = 0,±1,±2, .... The discrete-time angular frequencies
ωk = ω0 + 2π · k correspond to the following continuous-time frequencies:
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Ωk = ωk · fs =
(π

5
+ 2π · k

)

· 10

Taking different values of k we can obtain different continuous-time signals that will
produce the same discrete-time sequence. For instance:

k = 0 ⇒ Ω0 =
π
5 · 10 ⇒ x0(t) = cos(π2 t)

k = 1 ⇒ Ω1 = (π5 + 2π) · 10 ⇒ x1(t) = cos(41π2 t)

QUESTION 3 (6 points): Diagrammed below is a hybrid digital-analog system:

H
�
(e��)C/D

H
�
(jΩ)

x (t)

T
s

y (t)

D/C

+

T
s

The discrete-time system is a filter with a frequency response H0(e
jω), which has the

following shape:

ω

H0(e
jω)

0.4·π-0.4·π-π π

1

The input baseband analog signal is bandlimited to Ωmax = 2π ·4000, and the sampling
period of the ideal C/D and D/C converters is Ts = 10−4 s. Depict the shape that
the analog system H1(jΩ) must have in order to obtain perfect reconstruction, i.e.
y(t) = x(t) (2 points). Specify the numeric value of the relevant frequencies where the
shape of H1(jΩ) changes and the amplitude of H1(jΩ) at those relevant frequencies (4
points).
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SOLUTION:

This problem is almost identical to question 4 from exercise 3, which is available at the

course web-page.

We can easily check that the sampling period of the system Ts = 10−4 seconds is small
enough so that aliasing is avoided for all |Ω| < 2π ·4000 = Ωmax. That is, the sampling
period of the system is smaller than the sampling period corresponding to the Nyquist
rate:

TNyquist =
2π

ΩNyquist

=
2π

2 · Ωmax

=
2π

2 · 2π · 4000
=

1

8
· 10−3 seconds

whis is larger than Ts = 10−4. Then, the lower branch of the system (consisting of the
two converters and the digital filter) is equivalent to an analog filter with frequency
response:

H0(jΩ) = H0(e
jω)|w=Ω·Ts

That is, the frequency response of the equivalent analog filter H0(jΩ) is the result of
de-normalizing H0(e

jω) using the transformation Ω = ω
Ts

:

Ω

H
0
(jΩ)

2000·2π-2000·2π 10000·2π

1

-10000·2π

So the input-ouput relationship in Fourier domain is:

Y (jΩ) = X(jΩ) ·H0(jΩ) +X(jΩ) ·H1(jΩ) = X(jΩ) · [H0(jΩ) +H1(jΩ)]

For perfect reconstruction we need that:

Y (jΩ) = X(jΩ) ⇒ H0(jΩ) +H1(jΩ) = 1 ⇒ H1(jΩ) = 1−H0(jΩ)

for all |Ω| < Ωmax = 2π ·4000. So we have finally obtained that the analog filter H1(jΩ)
must have the following shape:
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Ω

H
1
(jΩ)

2000·2π-2000·2π

1

QUESTION 4 (6 points): Consider the system shown below. Assume that the
input is bandlimited, Xa(jΩ) = 0 for |Ω| > 2π · 1000.

C/D D/CL
x
a
(t)

x [n] y [n] y
a
(t)

T
1

T
2

(a) (3 points) What constraints must be placed on L, T1, and T2 in order for ya(t) to
be equal to xa(t)? Sketch the Fourier transforms of xa(t), x(n), y(n), and ya(t).

(b) If f1 = f2 = 20kHz and L = 4, find an expression for ya(t) in terms of xa(t) (2
points). What is the energy of ya(t) with respect to the energy of xa(t) (1 point)?

SOLUTION:

This question is identical to question 3 from homework 4, which is available at the

course web-page. This problem is solved with great level of detail only for teaching

purposes. In the exam you should show ONLY the major intermediate steps and skip

unnecessary explanations.

(a)

Without loss of generality, in the following we will assume that the CTFT of the input
analog signal xa(t) looks like depicted in Fig. 1.

where Ωm = 2π · 1000 is the maximum frequency present in xa(t). For perfect recon-
struction to be possible, aliasing in the C/D transformation must be avoided. So the
first contraint that has to be fullfiled is:
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( )aX jΩ

Ω

1

m−Ω mΩ

Figure 1: CTFT of the input analog signal xa(t).

Ω1 =
2π

T1
≥ 2Ωm ⇒ T1 ≤

2π

2Ωm

=
2π

2 · 2π · 1000
⇒ T1 ≤ 5 · 10−4 seconds (1)

Remember that in the D/C block take place two subsequent operations. First the
input analog signal is multiplied by continuous-time train of impulses having an inter-
impulse distance of T1 seconds. The result is also a continuous time signal xs(t) which
is non-zero only in those time instants that are an integer multiple of T1:

xs(t) =

{
x(t) if t

T1
∈ Z

0 otherwise

The CTFT of xs(t) is depicted in Fig. 2, where ∆ = Ω1 − 2Ωm is the spacing between
correlative copies of the spectrum of xa(t). Because we have enforced that Ω1 ≥ 2Ωm,
it is obvious that ∆ ≥ 0 and therefore there is overlap between two correlative spectral
aliases, i.e. there is not aliasing.

( )sX jΩ

Ω
m−Ω mΩ

1

1

T

1 mΩ − Ω
1−Ω 1Ω 1 mΩ + Ω1 m−Ω + Ω

∆

Figure 2: CTFT of the continuous-time sampled signal xs(t).

The DTFT X(ejω) of the discrete-time signal x[n] has the shape depicted in Fig. 2 but
with the frequency normalization ω = Ω · T1 =

Ω·2π
Ω1

. This DTFT is depicted in Fig. 3.

After the downsampler, the DTFT Y (ejω) of the sequence y[n] will be the obtained by
expanding the frequency range [−π, π) in Fig. 3 and replicating the result every 2π.
This is depicted in Fig. 4.
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( )jX e ω

ω
1mT−Ω 1mTΩ

1

1

T

2π− 2π

Figure 3: DTFT of the discrete-time sequence x[n].

( )jY e ω

ω
1mT L−Ω 1mT LΩ

1

1

LT

2π− 2π

'∆

12 mT Lπ − Ω

Figure 4: DTFT of the discrete-time sequence y[n].

From Fig. 4, it is obvious that for perfect reconstruction to be possible, the space
between correlative spectral aliases must be greater than 0, i.e:

∆′ ≥ 0 ⇒ 2π − 2ΩmT1L ≥ 0 ⇒ T1 ≤
2π

2ΩmL
⇒ T1 ≤

5 · 10−4

L
seconds (2)

Because L ≥ 2, the constraint given by Eq. 2 is more restrictive that the one found in
Eq. 1. Therefore our new constraint for T1 will be the one in Eq. 2.

The D/C block consists of two consecutive operations. First, the input discrete-time
sequence y[n] is converted into a continous-time signal ys(t), which is later passed
through an ideal low-pass reconstruction filter with cutoff frequency Ωm

2 and gain T2

to build the output analog signal ya(t). The purpose of the reconstruction filter is to
extract the baseband signal and remove the other spectral aliases. The CTFT Ys(jΩ)
of ys(t) is depicted in Fig. 5. Clearly, for the reconstruction filter to output a copy of
xa(t) the sampling period in the D/C block has to fulfil the constraint:

T2 = T1 · L (3)

If the condition above is fulfilled then the reconstruction filter will just retain the
baseband component in Ys(jΩ) and will amplify it by a factor equal to T2 = L · T1.
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Thus the CTFT of ya(t) will be the same as the CTFT of xa(t) and, therefore, ya(t) =
xa(t). Summarizing, the constraints in Eq. 2 and Eq. 3 have to be fulfilled for perfect
reconstruction to occur.

( )sY jΩ

Ω
1

2

mT L

T

Ω

1

1

LT

2−Ω 2Ω1

2

mT L

T

Ω−

Figure 5: CTFT of the continous-time signal ys(t). Notice that this is just the result
of de-normalizing the frequencies in Fig. 4 (Ω = ω

T2
).

(b)

Since f1 = f2 = f = 2 · 104 Hz, the sampling period in both the C/D and D/C blocks
will be T1 = T2 = 1

f
= 5 · 10−5 seconds and their angular sampling frequencies will be

Ωs = 2πfs = 4 · 104π radians/second. We can see that this sampling period fulfills the
constraint in Eq. 2:

T = 5 · 10−5 <
5 · 10−4

L
=

5 · 10−4

4
= 12.5 · 10−5

Therefore, neither the C/D block nor the downsampler will cause aliasing and the
spectral aliases in Fig. 5 will not overlap each other. In this case, the reconstruction
filter will have a cutoff Ωs

2 = 2 · 104π radians/seconds so that only the baseband alias
in Ys(jΩ) is retained. The CTFT of the output analog signal ya(t) is given in Fig. 6.

From Fig. 6 we can see that the relationship between Ya(jΩ) and Xa(jΩ) is:

Ya(jΩ) =
1

L
Xa(

jΩ

L
) =

1

4
Xa(

jΩ

4
) (4)

So the relationship in time domain is:

ya(t) = xa(Lt) = xa(4t) (5)
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( )aY jΩ

Ω
mLΩ

1

L

mL−Ω

Figure 6: CTFT of the continous-time output signal ya(t). Notice that this is just the
result of making that T1 = T2 = T in Fig. 5 and applying a lowpass reconstruction
filter with cutoff Ωs

2 and gain T .

Then the energy of the output analog signal is (by using Parseval’s relation):

Eya =

∫
∞

−∞

|ya(t)|
2dt =

1

2π

∫ ΩmL

−ΩmL

|Ya(jΩ)|
2dΩ (6)

so using Eq. 4 we have that:

Eya =
1

2π

∫ ΩmL

−ΩmL

|
1

4
Xa(

jΩ

4
)|2dΩ =

1

16
·
1

2π

∫ ΩmL

−ΩmL

|Xa(
jΩ

4
)|2dΩ (7)

and then by making the variable change Ω′ = Ω
4 we have that dΩ = 4dΩ′ and then

Eq. 7 becomes:

Eya =
4

16
·
1

2π

∫ ΩmL

−ΩmL

|Xa(jΩ
′)|2dΩ′ =

1

4
Exa

(8)

so the energy of the output signal is one fourth of the energy of the input signal.

The energy of the output could also have been obtained using the time-domain rela-
tionship between ya(t) and xa(t):

Eya =

∫
∞

−∞

|ya(t)|
2dt =

∫
∞

−∞

|xa(4t)|
2dt (9)

by making the variable change m = 4t we have that dt = 1
4dm and therefore, Eq. 9

becomes:
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Eya =
1

4

∫
∞

−∞

|xa(m)|2dm =
1

4
Exa

(10)

obtaining the same result that the energy of the ouput is one fourth of the energy of
the input.

QUESTION 5 (5 points): Evaluate the convolution of the two sequences h[n] =
(0.5)nµ[n] and x[n] = 3nµ[−n] by using the Z-transform.

SOLUTION:

This question is identical to question 4 from the sample exam that was solved in the

classroom and that is available in the course web-page.

Using either the table of elementary Z-transform pairs or applying the formula of the
foward Z-transform we obtain that:

H(z) =
1

1− 0.5z−1
ROC ≡ |z| > 0.5

X(z) = 1−
1

1− 3z−1
ROC ≡ |z| < 3

So the Z-transform of the convolution y[n] = x[n]⊗ h[n] is:

Y (z) = X(z)H(z) =
1

1− 0.5z−1
−

1

(1− 3z−1)(1 − 0.5z−1)
ROC ≡ 3 > |z| > 0.5

the second fraction above can be expanded using the method of the residuals:

1

(1− 3z−1)(1− 0.5z−1)
=

6
5

1− 3z−1
−

1
5

1− 0.5z−1

so that we can write:
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Y (z) =
1

1− 0.5z−1
−

6
5

1− 3z−1
+

1
5

1− 0.5z−1

which can be directly inverted using the table of elementary Z-transform pairs:

y[n] =

(
1

2

)n

µ[n] +
6

5
(3)n µ[−n− 1] +

1

5

(
1

2

)n

µ[n]

The expression above is different to the expression that you can find in the solutions of

the sample exam that we solved in the classroom. However, you can easily check that

the expression there and here are equivalent.

QUESTION 6 (5 points): Find the inverse Z-transform of

X(z) =
1− 3z−5

(1− 0.2z−1)(1 + 0.6z−1)
ROC ≡ 0.2 < |z| < 0.6

SOLUTION:

Since the order of the numerator is greater that the order of the denominator we cannot
apply directly the method of the residuals toX(z). One way of proceeding is to perform
a long division but this can be a rather long process. Since the numerator of our Z
expression has only two terms the best is to rewrite X(z) as:

X(z) =
1

(1− 0.2z−1)(1 + 0.6z−1)
︸ ︷︷ ︸

G(z)

−3z−5 1

(1 − 0.2z−1)(1 + 0.6z−1)
︸ ︷︷ ︸

G(z)

and use the linearity and shifting properties of the Z-transform to write:

x[n] = g[n]− 3g[n − 5]

where g[n] is the inverse Z-transform of G(z). Inverting G(z) is very easy using the
method of the residuals:
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G(z) =
1

(1− 0.2z−1)(1 + 0.6z−1)
=

1
4

1− 0.2z−1
+

3
4

1 + 0.6z−1

So we have that:

g[n] =
1

4
(0.2)nµ[n]−

3

4
(−0.6)nµ[−n− 1]

and then x[n] = g[n]− 3g[n − 5].
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