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QUESTION 1 (7 points): Compute the 4-point DFTs of the two real sequences:

x1 = {1, 4, −2, 0}

x2 = {−2, 0, 1, 3}

using ONLY a single 4-point DFT.

SOLUTION:

Since both x1[n] and x2[n] are real sequences of the same length their DFTs can be
obtained by computing the single DFT of the complex sequence y[n] = x1[n] + jx2[n].
So, first we define such sequence:

y[n] = x1[n] + jx2[n] = {1− 2j, 4,−2 + j, 3j}

Then we compute its 4-point DFT using the classical DFT formula or its matrix version.
If the length of the DFT is 2 or 4 the matrix form is specially suitable because the
entries of the DFT matrix are just real numbers and purely imaginary numbers. By
using boldface lowercase letters to denote column vector and boldface uppercase letters
to denote matrices, we can write:
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So we obtained that the DFT of y[n] is Y [k] = {3 + 2j, −7j, −5− 4j, 6 + j}. Then,
the DFT of x1[n] and x2[n] are given by:

X1[k] = 1

2
[Y [k] + Y ∗[< −k >4]]

X2[k] = 1

2j
[Y [k]− Y ∗[< −k >4]]

(1)

In the two equations above we have the term Y ∗[< −k >4] which is the complex
conjugate of the circularly time-reversed version of Y [k]. The easiest way of obtaining
Y [< −k >4] is graphically:
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Figure 1: Circular time-reversal of sequence Y [k]. Note that the length of the lines
representing each point of the sequence are arbitrary (unrelated to the actual complex
value of those points) and should be understood just a means of differentiating between
the different points of the sequence.

So we obtained that Y [< −k >4] = {3 + 2j, 6 + j, −5 + 4j, −7j} and, therefore,
Y ∗[< −k >4] = {3− 2j, 6 − j,−5− 4j,+7j}. Replacing the value of Y ∗[< −k >4] in
Eq. 1 we finally obtain that:

X1[k] = 1

2
[Y [k] + Y ∗[< −k >4]] = {3, 3− 4j, −5, 3 + 4j}

X2[k] = 1

2j
[Y [k]− Y ∗[< −k >4]] = {2, −3 + 3j, −4, −3− 3j}

You can check that what you did above is correct with MATLAB. To replicate the
steps above in MATLAB you have to execute these commands:

x1=[1 4 -2 0];

x2=[-2 0 1 3];
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y = x1+j*x2;

Y = fft(y);

Y2 = conj([Y(1) fliplr(Y(2:end))]); % circ. time-revers. + conjug.

X1 = .5*[Y+Y2];

X2 = -.5*j*[Y-Y2];

Alternatively you can compute the DFT of x1 and x2 separately to double-check ev-
erything:

X1fft = fft(x1);

X2fft = fft(x2);

And you can observe that X1 and X2 are identical to X1fft and X2fft, respectively.

QUESTION 2 (8 points): Compute the linear convolution of the two sequences:

x1 = {1, 1, 2, −1, 0, 1}

x2 = {1, −2, 3, 2, 1, 0}

using the formula of the convolution and using the DFT. Check that both methods
yield the same result. For the computations using the DFT you can use MATLAB
but giving the exact commands that you typed and explaining why. See the help of
functions fft and ifft.

SOLUTION:

The linear convolution formula is:

y[n] =
∞
∑

m=−∞

x1[m]x2[−m+ n] (2)

because the length of x1 is L1 = 6 and the length of x2 is L2 = 5, the length of their
linear convolution y[n] must be L1 + L2 − 1 = 10. So using Eq. 2 for n = 1, ..., 10 we
obtain that:
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y = {1, −1, 3, 0, 11, 3, −2, 2, 2, 1}

this result can be checked using MATLAB:

x1=[1 1 2 -1 0 1];

x2=[1 -2 3 2 1];

y = conv(x1,x2);

In order to compute the linear convolution of x1 and x2 using the DFT we have to
compute the DFT of L1 + L2 − 1 = 10 points of both x1 and x2. This can done in
MATLAB with the commands:

x1=[1 1 2 -1 0 1];

x2=[1 -2 3 2 1];

X1=fft(x1,10);

X2=fft(x2,10);

and then the linear convoltion y[n] = x1[n] ⊗ x2[n] will just be the inverse DFT of 10
points of the product of the two DFTs that we just computed above:

y = ifft(X1.*X2,10);

which is equal to the result that we obtained using the formula of the linear convolution.

QUESTION 3 (15 points): Consider the system shown in Figure 2. Assume that
the input is bandlimited, Xa(jΩ) = 0 for |Ω| > 2π · 1000.

(a) What constraints must be placed on L, T1, and T2 in order for ya(t) to be equal
to xa(t)? Sketch the Fourier transforms of xa(t), x(n), y(n), and ya(t).

(b) If f1 = f2 = 20kHz and L = 4, find an expression for ya(t) in terms of xa(t).
What is the energy of ya(t) with respect to the energy of xa(t)?
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Figure 2: Block diagram of the system of question 3.

SOLUTION:

(a)

Without loss of generality, in the following we will assume that the CTFT of the input
analog signal xa(t) looks like depicted in Fig. 3.

( )aX jΩ

Ω

1

m−Ω mΩ

Figure 3: CTFT of the input analog signal xa(t).

where Ωm = 2π · 1000 is the maximum frequency present in xa(t). For perfect recon-
struction to be possible aliasing in the C/D transformation must be avoided. So the
first contraint that has to be fullfiled is:

Ω1 =
2π

T1

≥ 2Ωm ⇒ T1 ≤
2π

2Ωm

=
2π

2 · 2π · 1000
⇒ T1 ≤ 5 · 10−4 seconds (3)

Remember that in the D/C block take place two subsequent operations. First the
input analog signal is multiplied by continuous-time train of impulses having an inter-
impulse distance of T1 seconds. The result is also a continuous time signal xs(t) which
is non-zero only in those time instants that are an integer multiple of T1:

xs(t) =

{

x(t) if t
T1

∈ Z

0 otherwise

The CTFT of xs(t) is depicted in Fig. 4, where ∆ = Ω1 − 2Ωm is the spacing between
correlative copies of the spectrum of xa(t). Because we have enforced that Ω1 ≥ 2Ωm,

5



it is obvious that ∆ ≥ 0 and therefore there is overlap between two correlative spectral
alias, i.e. there is not aliasing.
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∆

Figure 4: CTFT of the continuous-time sampled signal xs(t).

The DTFT X(ejω) of the discrete-time signal x[n] has the shape depicted in Fig. 4 but
with the frequency normalization ω = Ω · T1 =

Ω·2π
Ω1

. This DTFT is depicted in Fig. 5.
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Figure 5: DTFT of the discrete-time sequence x[n].

After the downsampler, the DTFT Y (ejω) of the sequence y[n] will be the obtained by
expanding the frequency range [−π, π) in Fig. 5 and replicating the result every 2π.
This is depicted in Fig. 6.

( )jY e ω

ω
1mT L−Ω 1mT LΩ

1

1

LT

2π− 2π

'∆

12 mT Lπ − Ω

Figure 6: DTFT of the discrete-time sequence y[n].

From Fig. 6, it is obvious that for perfect reconstruction to be possible, the space
between correlative spectral aliases must be greater than 0, i.e:
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∆′ ≥ 0 ⇒ 2π − 2ΩmT1L ≥ 0 ⇒ T1 ≤
2π

2ΩmL
⇒ T1 ≤

5 · 10−4

L
seconds (4)

Because L ≥ 2, the constraint given by Eq. 4 is more restrictive that the one found in
Eq. 3. Therefore our new constraint for T1 will be the one in Eq. 4.

The D/C block consists of two consecutive operations. First, the input discrete-time
sequence y[n] is converted into a continous-time signal ys(t), which is later passed
through an ideal low-pass reconstruction filter with cutoff frequency Ωm

2
and gain T2

to build the output analog signal ya(t). The purpose of the reconstruction filter is
extract the baseband spectral alias and remove the others. The CTFT Ys(jΩ) of ys(t)
is depicted in Fig. 7. Clearly, for the reconstruction filter to output a copy of xa(t) the
sampling period in the D/C block has to fulfil the constraint:

T2 = T1 · L (5)

If the condition above is fulfilled then the reconstruction filter will just retain the
baseband spectral alias in Ys(jΩ) and will amplify it by a factor equal to T2 = L · T1.
Thus the CTFT of ya(t) will be the same as the CTFT of xa(t), i.e. ya(t) = xa(t).
So summarizing, the constraints in Eq. 4 and Eq. 5 have to be fulfilled for perfect
reconstruction to occur.
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Figure 7: CTFT of the continous-time signal ys(t). Notice that this is just the result
of de-normalizing the frequencies in Fig. 6 (Ω = ω

T2
).

(b)

Since f1 = f2 = f = 2 · 104 Hz, the sampling period in both the C/D and D/C blocs
will be T1 = T2 = 1

f
= 5 · 10−5 seconds and their angular sampling frequencies will be

Ωs = 2πfs = 4 · 104π radians/second. We can see that this sampling period fulfills the
constraint in Eq. 4:
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T = 5 · 10−5 <
5 · 10−4

L
=

5 · 10−4

4
= 12.5 · 10−5

Therefore, neither the C/D block nor the downsampler will cause aliasing and the
spectral aliases in Fig. 7 will not overlap each other. In this case, the reconstruction
filter will have a cutoff Ωs

2
= 2 · 104π radians/seconds so that only the baseband alias

in Ys(jΩ) is retained. The CTFT of the output analog signal ya(t) is given in Fig. 8.

( )aY jΩ

Ω
mLΩ

1

L

mL−Ω

Figure 8: CTFT of the continous-time output signal ya(t). Notice that this is just the
result of making that T1 = T2 = T in Fig. 7 and applying a lowpass reconstruction
filter with cutoff Ωs

2
and gain T .

So we have finally obtained that the relationship between Ya(jΩ) and Xa(jΩ) is:

Ya(jΩ) =
1

L
Xa(

jΩ

L
) =

1

4
Xa(

jΩ

4
) (6)

So the relationship in time domain is:

ya(t) = xa(Lt) = xa(4t) (7)

Then the energy of the output analog signal is (by using Parseval’s relation):

Eya =

∫

∞

−∞

|ya(t)|
2dt =

1

2π

∫

ΩmL

−ΩmL

|Ya(jΩ)|
2dΩ (8)

so using Eq. 6 we have that:

Eya =
1

2π

∫

ΩmL

−ΩmL

|
1

4
Xa(

jΩ

4
)|2dΩ =

1

16
·
1

2π

∫

ΩmL

−ΩmL

|Xa(
jΩ

4
)|2dΩ (9)
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and then by making the variable change Ω′ = Ω

4
we have that dΩ = 4dΩ′ and then

Eq. 9 becomes:

Eya =
4

16
·
1

2π

∫

ΩmL

−ΩmL

|Xa(jΩ
′)|2dΩ′ =

1

4
Exa

(10)

so the energy of the output signal is one fourth of the energy of the input signal.

The energy of the output could also have been obtained using the time-domain rela-
tionship between ya(t) and xa(t):

Eya =

∫

∞

−∞

|ya(t)|
2dt =

∫

∞

−∞

|xa(4t)|
2dt (11)

by making the variable change m = 4t we have that dt = 1

4
dm and therefore, Eq. 11

becomes:

Eya =
1

4

∫

∞

−∞

|xa(m)|2dm =
1

4
Exa

(12)

obtaining the same result that the energy of the ouput is one fourth of the energy of
the input.
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