
Understanding Random Forests
From Theory to Practice

Gilles Louppe

Université de Liège, Belgium

October 9, 2014

1 / 39

Motivation

2 / 39

Objective

From a set of measurements,

learn a model

to predict and understand a phenomenon.

3 / 39

Running example

From physicochemical
properties (alcohol, acidity,

sulphates, ...),

learn a model

to predict wine taste
preferences (from 0 to 10).

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis, Modeling wine

preferences by data mining from physicochemical properties, 2009.

4 / 39

Outline

1 Motivation

2 Growing decision trees and random forests
Review of state-of-the-art, minor contributions

3 Interpreting random forests
Major contributions (Theory)

4 Implementing and accelerating random forests
Major contributions (Practice)

5 Conclusions

5 / 39

Supervised learning

• The inputs are random variables X = X1, ..., Xp ;

• The output is a random variable Y .

• Data comes as a finite learning set

L = {(xi , yi)|i = 0, . . . ,N − 1},

where xi ∈ X = X1 × ...× Xp and yi ∈ Y are randomly drawn
from PX ,Y .

E.g., (xi , yi) = ((color = red, alcohol = 12, ...), score = 6)

• The goal is to find a model ϕL : X 7→ Y minimizing

Err(ϕL) = EX ,Y {L(Y ,ϕL(X))}.

6 / 39

Performance evaluation

Classification

• Symbolic output (e.g., Y = {yes, no})

• Zero-one loss

L(Y ,ϕL(X)) = 1(Y 6= ϕL(X))

Regression

• Numerical output (e.g., Y = R)

• Squared error loss

L(Y ,ϕL(X)) = (Y −ϕL(X))2

7 / 39

Divide and conquer

X1

X2

8 / 39

Divide and conquer

0.7 X1

X2

8 / 39

Divide and conquer

0.7

0.5

X1

X2

8 / 39

Decision trees

0.7

0.5

X1

X2

t5
t3

t4
𝑡2

𝑋1 ≤0.7

𝑡1

𝑡3

𝑡4 𝑡5

𝒙

𝑝(𝑌 = 𝑐|𝑋 = 𝒙)

Split node

Leaf node≤ >

𝑋2 ≤0.5
≤ >

t ∈ ϕ : nodes of the tree ϕ
Xt : split variable at t
vt ∈ R : split threshold at t
ϕ(x) = arg maxc∈Y p(Y = c |X = x)

9 / 39

Learning from data (CART)

function BuildDecisionTree(L)
Create node t from the learning sample Lt = L

if the stopping criterion is met for t then
ŷt = some constant value

else
Find the split on Lt that maximizes impurity decrease

s∗ = arg max
s∈Q

∆i(s, t)

Partition Lt into LtL ∪ LtR according to s∗

tL = BuildDecisionTree(LL)
tR = BuildDecisionTree(LR)

end if
return t

end function

10 / 39

Back to our example

alcohol <= 10.625

vol. acidity <= 0.237 alcohol <= 11.741

y = 5.915 y = 5.382 vol. acidity <= 0.442 y = 6.516

y = 6.131 y = 5.557

11 / 39

Bias-variance decomposition

Theorem. For the squared error loss, the
bias-variance decomposition of the
expected generalization error at X = x is

EL{Err(ϕL(x))} = noise(x)+bias2(x)+var(x)

where

noise(x) = Err(ϕB(x)),

bias2(x) = (ϕB(x) − EL{ϕL(x)})
2,

var(x) = EL{(EL{ϕL(x)}−ϕL(x))
2}.

y

P

'B (x)

L 'L(x)

bias2 (x)

noise(x) var(x)

{ }

12 / 39

Diagnosing the generalization error of a decision tree

• (Residual error : Lowest achievable error, independent of ϕL.)

• Bias : Decision trees usually have low bias.

• Variance : They often suffer from high variance.

• Solution : Combine the predictions of several randomized trees
into a single model.

13 / 39

Random forests

𝒙

𝑝𝜑1
(𝑌 = 𝑐|𝑋 = 𝒙)

𝜑1 𝜑𝑀

…

𝑝𝜑𝑚
(𝑌 = 𝑐|𝑋 = 𝒙)

 ∑

𝑝𝜓(𝑌 = 𝑐|𝑋 = 𝒙)

Randomization
• Bootstrap samples } Random Forests• Random selection of K 6 p split variables } Extra-Trees• Random selection of the threshold

14 / 39

Bias-variance decomposition (cont.)

Theorem. For the squared error loss, the bias-variance
decomposition of the expected generalization error
EL{Err(ψL,θ1,...,θM (x))} at X = x of an ensemble of M
randomized models ϕL,θm is

EL{Err(ψL,θ1,...,θM (x))} = noise(x) + bias2(x) + var(x),

where

noise(x) = Err(ϕB(x)),

bias2(x) = (ϕB(x) − EL,θ{ϕL,θ(x)})
2,

var(x) = ρ(x)σ2
L,θ(x) +

1 − ρ(x)

M
σ2
L,θ(x).

and where ρ(x) is the Pearson correlation coefficient between the
predictions of two randomized trees built on the same learning set.

15 / 39

Diagnosing the generalization error of random forests

• Bias : Identical to the bias of a single randomized tree.

• Variance : var(x) = ρ(x)σ2
L,θ(x) +

1−ρ(x)
M σ2

L,θ(x)

As M →∞, var(x)→ ρ(x)σ2
L,θ(x)

The stronger the randomization, ρ(x)→ 0, var(x)→ 0.
The weaker the randomization, ρ(x)→ 1, var(x)→ σ2

L,θ(x)

Bias-variance trade-off. Randomization increases bias but makes
it possible to reduce the variance of the corresponding ensemble
model. The crux of the problem is to find the right trade-off.

16 / 39

Back to our example

Method Trees MSE

CART 1 1.055
Random Forest 50 0.517
Extra-Trees 50 0.507

Combining several randomized trees indeed works better !

17 / 39

Outline

1 Motivation

2 Growing decision trees and random forests

3 Interpreting random forests

4 Implementing and accelerating random forests

5 Conclusions

18 / 39

Variable importances

• Interpretability can be recovered through variable importances

• Two main importance measures :
The mean decrease of impurity (MDI) : summing total
impurity reductions at all tree nodes where the variable
appears (Breiman et al., 1984) ;
The mean decrease of accuracy (MDA) : measuring
accuracy reduction on out-of-bag samples when the values of
the variable are randomly permuted (Breiman, 2001).

• We focus here on MDI because :
It is faster to compute ;
It does not require to use bootstrap sampling ;
In practice, it correlates well with the MDA measure.

19 / 39

Mean decrease of impurity

𝜑1 𝜑𝑀 𝜑2

…

Importance of variable Xj for an ensemble of M trees ϕm is :

Imp(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

1(jt = j)
[
p(t)∆i(t)

]
,

where jt denotes the variable used at node t, p(t) = Nt/N and
∆i(t) is the impurity reduction at node t :

∆i(t) = i(t) −
NtL

Nt
i(tL) −

Ntr

Nt
i(tR)

20 / 39

Back to our example

MDI scores as computed from a forest of 1000 fully developed
trees on the Wine dataset (Random Forest, default parameters).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

color

fixed acidity

citric acid

dens ity

chlorides

pH

res idual sugar

total sulfur dioxide

sulphates

free sulfur dioxide

volatile acidity

alcohol

21 / 39

What does it mean ?

• MDI works well, but it is not well understood theoretically ;

• We would like to better characterize it and derive its main
properties from this characterization.

• Working assumptions :

All variables are discrete ;
Multi-way splits à la C4.5 (i.e., one branch per value) ;
Shannon entropy as impurity measure :

i(t) = −
∑
c

Nt,c

Nt
log

Nt,c

Nt

Totally randomized trees (RF with K = 1) ;
Asymptotic conditions : N →∞, M →∞.

22 / 39

Result 1 : Three-level decomposition (Louppe et al., 2013)

Theorem. Variable importances provide a three-level
decomposition of the information jointly provided by all the input
variables about the output, accounting for all interaction terms in
a fair and exhaustive way.

I (X1, . . . ,Xp;Y)︸ ︷︷ ︸
Information jointly provided

by all input variables
about the output

=

p∑
j=1

Imp(Xj)︸ ︷︷ ︸
i) Decomposition in terms of

the MDI importance of
each input variable

Imp(Xj) =

p−1∑
k=0

1

C k
p

1

p − k︸ ︷︷ ︸
ii) Decomposition along

the degrees k of interaction
with the other variables

∑
B∈Pk(V−j)

I (Xj ;Y |B)

︸ ︷︷ ︸
iii) Decomposition along all

interaction terms B
of a given degree k

E.g. : p = 3, Imp(X1) = 1
3 I(X1;Y)+ 1

6 (I(X1;Y |X2)+I(X1;Y |X3))+
1
3 I(X1;Y |X2,X3)

23 / 39

Illustration : 7-segment display (Breiman et al., 1984)

y x1 x2 x3 x4 x5 x6 x7

0 1 1 1 0 1 1 1
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1

24 / 39

Illustration : 7-segment display (Breiman et al., 1984)

Imp(Xj) =

p−1∑
k=0

1

C k
p

1

p − k

∑
B∈Pk(V−j)

I (Xj ;Y |B)

Var Imp

X1 0.412
X2 0.581
X3 0.531
X4 0.542
X5 0.656
X6 0.225
X7 0.372∑

3.321

0 1 2 3 4 5 6

X1

X2

X3

X4

X5

X6

X7

k
24 / 39

Result 2 : Irrelevant variables (Louppe et al., 2013)

Theorem. Variable importances depend only on the relevant
variables.

Theorem. A variable Xj is irrelevant if and only if Imp(Xj) = 0.

⇒ The importance of a relevant variable is insensitive to the
addition or the removal of irrelevant variables.

Definition (Kohavi & John, 1997). A variable X is irrelevant (to Y with respect to V)

if, for all B ⊆ V , I(X ;Y |B) = 0. A variable is relevant if it is not irrelevant.

25 / 39

Relaxing assumptions

When trees are not totally random...

• There can be relevant variables with zero importances (due to
masking effects).

• The importance of relevant variables can be influenced by the
number of irrelevant variables.

When the learning set is finite...

• Importances are biased towards variables of high cardinality.

• This effect can be minimized by collecting impurity terms
measured from large enough sample only.

When splits are not multiway...

• i(t) does not actually measure the mutual information.

26 / 39

Back to our example
MDI scores as computed from a forest of 1000 fixed-depth trees on
the Wine dataset (Extra-Trees, K = 1, max depth = 5).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

pH

res idual sugar

fixed acidity

sulphates

free sulfur dioxide

citric acid

chlorides

total sulfur dioxide

dens ity

color

volatile acidity

alcohol

Taking into account (some of) the biases
results in quite a different story !

27 / 39

Outline

1 Motivation

2 Growing decision trees and random forests

3 Interpreting random forests

4 Implementing and accelerating random forests

5 Conclusions

28 / 39

Implementation (Buitinck et al., 2013)

Scikit-Learn

• Open source machine learning library for
Python

• Classical and well-established
algorithms

• Emphasis on code quality and usability

scikit

A long team effort

Time for building a Random Forest (relative to version 0.10)

1 0.99 0.98

0.33
0.11 0.04

0.10 0.11 0.12 0.13 0.14 0.15

29 / 39

Implementation overview

• Modular implementation, designed with a strict separation of
concerns

Builders : for building and connecting nodes into a tree
Splitters : for finding a split
Criteria : for evaluating the goodness of a split
Tree : dedicated data structure

• Efficient algorithmic formulation [See Louppe, 2014]

Dedicated sorting procedure
Efficient evaluation of consecutive splits

• Close to the metal, carefully coded, implementation
2300+ lines of Python, 3000+ lines of Cython, 1700+ lines of tests

But we kept it stupid simple for users!

clf = RandomForestClassifier()

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

30 / 39

http://arxiv.org/abs/1407.7502

A winning strategy
Scikit-Learn implementation proves to be one of the fastest
among all libraries and programming languages.

0

2000

4000

6000

8000

10000

12000

14000

Fi
t

ti
m

e
(s

)

203.01 211.53

4464.65

3342.83

1518.14 1711.94

1027.91

13427.06

10941.72

Scikit-Learn-RF
Scikit-Learn-ETs
OpenCV-RF
OpenCV-ETs
OK3-RF
OK3-ETs
Weka-RF
R-RF
Orange-RF

Scikit-Learn
Python, Cython

OpenCV
C++

OK3
C Weka

Java

randomForest
R, Fortran

Orange
Python

31 / 39

Computational complexity (Louppe, 2014)

Average time complexity

CART Θ(pN log2 N)

Random Forest Θ(MKÑ log2 Ñ)
Extra-Trees Θ(MKN logN)

• N : number of samples in L

• p : number of input variables

• K : the number of variables randomly drawn at each node

• Ñ = 0.632N.

32 / 39

Improving scalability through randomization

Motivation

• Randomization and averaging allow to improve accuracy by
reducing variance.

• As a nice side-effect, the resulting algorithms are fast and
embarrassingly parallel.

• Why not purposely exploit randomization to make the
algorithm even more scalable (and at least as accurate) ?

Problem

• Let assume a supervised learning problem of Ns samples
defined over Nf features. Let also assume T computing
nodes, each with a memory capacity limited to Mmax , with
Mmax � Ns × Nf .

• How to best exploit the memory constraint to obtain the most
accurate model, as quickly as possible ?

33 / 39

A straightforward solution : Random Patches (Louppe et al., 2012)

X Y

...}

1. Draw a subsample r of psNs

random examples, with pfNf

random features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T of
estimators.

4. Aggregate the predictions by
voting.

ps and pf are two meta-parameters that
should be selected

• such that psNs × pfNf 6 Mmax

• to optimize accuracy

34 / 39

Impact of memory constraint

0.1 0.2 0.3 0.4 0.5
Memory constraint

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc
u
ra
cy

RP-ET
RP-DT
ET
RF

35 / 39

Lessons learned from subsampling

• Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

• As a result, both memory consumption and training time can
be reduced, at low cost.

• With strong memory constraints, RP can exploit data better
than the other methods.

• Sampling features is critical to improve accuracy. Sampling
the examples only is often ineffective.

36 / 39

Outline

1 Motivation

2 Growing decision trees and random forests

3 Interpreting random forests

4 Implementing and accelerating random forests

5 Conclusions

37 / 39

Opening the black box

• Random forests constitute one of the most robust and
effective machine learning algorithms for many problems.

• While simple in design and easy to use, random forests remain
however

hard to analyze theoretically,
non-trivial to interpret,
difficult to implement properly.

• Through an in-depth re-assessment of the method, this
dissertation has proposed original contributions on these
issues.

38 / 39

Future works

Variable importances

• Theoretical characterization of variable importances in a finite
setting.

• (Re-analysis of) empirical studies based on variable
importances, in light of the results and conclusions of the
thesis.

• Study of variable importances in boosting.

Subsampling

• Finer study of subsampling statistical mechanisms.

• Smart sampling.

39 / 39

Questions ?

40 / 39

Backup slides

41 / 39

Condorcet’s jury theorem

Let consider a group of M voters.

If each voter has an independent
probability p > 1

2 of voting for the correct
decision, then adding more voters increases
the probability of the majority decision to
be correct.

When M →∞, the probability that the
decision taken by the group is correct
approaches 1.

42 / 39

Interpretation of ρ(x) (Louppe, 2014)

Theorem. ρ(x) =
VL{Eθ|L{ϕL,θ(x)}}

VL{Eθ|L{ϕL,θ(x)}}+EL{Vθ|L{ϕL,θ(x)}}

In other words, it is the ratio between

• the variance due to the learning set and

• the total variance, accounting for random effects due to both
the learning set and the random perburbations.

ρ(x)→ 1 when variance is mostly due to the learning set ;
ρ(x)→ 0 when variance is mostly due to the random
perturbations ;
ρ(x) > 0.

43 / 39

	Motivation
	Growing decision trees and random forests
	Interpreting random forests
	Implementing and accelerating random forests
	Conclusions
	Annexe

