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Objective

From a set of measurements,

learn a model

to predict and understand a phenomenon.
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Running example

From physicochemical —
properties (alcohol, acidity,
sulphates, ...),

learn a model

to predict wine taste
preferences (from 0 to 10).

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis, Modeling wine

preferences by data mining from physicochemical properties, 2009.
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Supervised learning

e The inputs are random variables X = Xi, ..., X;;
e The output is a random variable Y.
e Data comes as a finite learning set

L:{(X;,y,')“:O,...,N—l},

where x; € X = X1 x ... x X, and y; € Y are randomly drawn
from Px y.

E.g., (xi, y;) = ((color = red, alcohol =12, ...), score = 6)
e The goal is to find a model @ : X — Y minimizing

Err(og) = Ex v{L(Y, @ (X))}
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Performance evaluation

Classification

e Symbolic output (e.g., Y = {yes, no})

e Zero-one loss

LY, @2 (X)) =1(Y # @ (X))

Regression

e Numerical output (e.g., Y =R)

e Squared error loss

LY, 9£(X) = (Y = @g(X))?



Divide and conquer
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Divide and conquer
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Divide and conquer
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Decision trees

07 X,

t € @ : nodes of the tree @

X: @ split variable at t

vt € R : split threshold at ¢t

@(x) = argmax.cy p(Y = c|X =x)

p(Y =c|X =x)
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Learning from data (carm)

function BUILDDECISIONTREE(X)
Create node t from the learning sample £; = £
if the stopping criterion is met for t then
Yt = some constant value
else
Find the split on £; that maximizes impurity decrease

s* = argmaxAi(s, t)
s€Q

Partition £ into £ U Ly, according to s*
t; = BUILDDECISIONTREE(L )
tr = BUILDDECISIONTREE(LR)
end if
return t
end function
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Back to our example

alcohol <= 10.625
vol. acidity <= 0.237 alcohol <= 11.741
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Bias-variance decomposition

Theorem. For the squared error loss, the
bias-variance decomposition of the
expected generalization error at X = x is

E:{Err(@¢(x))} = noise(x)+bias?(x)+var(x)
where

noise(x) = Err(@g(x)),
bias?(x) = (¢g(x) — Ec{@c (x)})?,
var(x) = Eg{(Ec{@ (%)} — @ (x)?).
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Diagnosing the generalization error of a decision tree

(Residual error : Lowest achievable error, independent of ¢ .)

Bias : Decision trees usually have low bias.

Variance : They often suffer from high variance.

Solution : Combine the predictions of several randomized trees
into a single model.
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Random forests

X
Pp, (Y =clX =x) Po, (Y =c|X =x)

™

Py(Y = clX =)

Randomization

e Bootstrap samples
e Random selection of K < p split variables Random Forests
e Random selection of the threshold Extra-Trees
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Bias-variance decomposition (cont.)

Theorem. For the squared error loss, the bias-variance
decomposition of the expected generalization error
Ec{Err(WV s 0,,..0,(x))} at X = x of an ensemble of M
randomized models @ g, is

Ec{Err(Pe e,,..0,(x))} = noise(x) + bias?(x) + var(x),
where
noise(x) = Err(@g(x)),
bias®(x) = (@&(x) —Ec,e{@c,0(x)})?,

1—p(x) 2

var(x) = p(X)Gi,e(X) + M 0¢,0(x).

and where p(x) is the Pearson correlation coefficient between the
predictions of two randomized trees built on the same learning set.
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Diagnosing the generalization error of random forests

e Bias : Identical to the bias of a single randomized tree.

e Variance : var(x) = p(X)Giye(X) + 1_/\3/()() U%,e(x)

As M — oo, var(x) — p(x)diye(x)
m The stronger the randomization, p(x) — 0, var(x) — 0.
m The weaker the randomization, p(x) — 1, var(x) — Gzﬁ,e(x)

Bias-variance trade-off. Randomization increases bias but makes
it possible to reduce the variance of the corresponding ensemble
model. The crux of the problem is to find the right trade-off.

16
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Back to our example

Method Trees MSE
CART 1 1.055
Random Forest 50 0.517
Extra-Trees 50 0.507

Combining several randomized trees indeed works better !
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Outline

® Interpreting random forests
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Variable importances

o Interpretability can be recovered through variable importances

e Two main importance measures :

m The mean decrease of impurity (MDI) : summing total
impurity reductions at all tree nodes where the variable
appears (Breiman et al., 1984) ;

m The mean decrease of accuracy (MDA) : measuring
accuracy reduction on out-of-bag samples when the values of
the variable are randomly permuted (Breiman, 2001).

e We focus here on MDI because :
m It is faster to compute;
m It does not require to use bootstrap sampling;
m In practice, it correlates well with the MDA measure.
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Mean decrease of impurity

Importance of variable X; for an ensemble of M trees @, is :

Imp(X, ZZlut—J[ Aifr)],

m=1teEpn

where j; denotes the variable used at node t, p(t) = N;/N and
Ai(t) is the impurity reduction at node t :

N N
—Li(ty) —

Ai(t) =i(t) — N, N,

i(tr)
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Back to our example

MDI scores as computed from a forest of 1000 fully developed
trees on the Wine dataset (Random Forest, default parameters).

alcoho! [
volatile acidity _
free sulfur dioxide _
sulphates [N
total sulfur dioxide _
residual sugar _
ot I
chlorides _
density _
citric acid _
fixed acidity _

color I

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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What does it mean?

MDI works well, but it is not well understood theoretically ;

We would like to better characterize it and derive its main
properties from this characterization.

Working assumptions :

m All variables are discrete;;
m Multi-way splits a la C4.5 (i.e., one branch per value);
m Shannon entropy as impurity measure :

ZNtc Ntc

Totally randomized trees (RF with K =1);
Asymptotic conditions : N — oo, M — o0.

22
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Result 1 : Three-level decomposition (Louppe et al., 2013)

Theorem. Variable importances provide a three-level
decomposition of the information jointly provided by all the input
variables about the output, accounting for all interaction terms in
a fair and exhaustive way.

p
(Xt X Y) = ) Imp(X))
Information jointly provided J\:/__/

by all input variables

about the output i) Decomposition in terms of

the MDI importance of
each input variable

p—1
1 1
mpO) = ) o > X:viB)
k=0 P BePy (V)

i) Decomposm.on along iii) Decomposition along all
the degrees k of interaction interaction terms B

with the other variables of a given degree k
E.g :p=3Imp(X1) = 3/ (Xt; Y)+ (/X1 YIX2)+1(Xe; YIX3))+31(X1; YIXz, X3)
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. 7T-segment display (Breiman et al., 1984)

[[lustration

‘Y‘Xl X2 X3 X4 X5 X X7‘

X1

X7
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lllustration : 7-segment display (Breiman et al., 1984)

R
mp(X) =) Fo T 2 I(XiYIB)

k=0 P BeP( (V)

X; | 0.412 ol

X, | 0.581 ’

X; | 0.531 X5 |

X, | 0.542

Xs | 0.656

Xs | 0.225 X

X; | 0.372 x, |

PAEEZ
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Result 2 : Irrelevant variables (Louppe et al., 2013)

Theorem. Variable importances depend only on the relevant
variables.

Theorem. A variable Xj is irrelevant if and only if Imp(Xj) = 0.

= The importance of a relevant variable is insensitive to the
addition or the removal of irrelevant variables.

Definition (Kohavi & John, 1997). A variable X is irrelevant (to Y with respect to V)
if, for all B C V, I(X;Y|B) =0. A variable is relevant if it is not irrelevant.
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Relaxing assumptions

When trees are not totally random...

e There can be relevant variables with zero importances (due to
masking effects).

e The importance of relevant variables can be influenced by the
number of irrelevant variables.

When the learning set is finite...

e Importances are biased towards variables of high cardinality.

e This effect can be minimized by collecting impurity terms
measured from large enough sample only.

When splits are not multiway...

e i(t) does not actually measure the mutual information.
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Back to our example

MDI scores as computed from a forest of 1000 fixed-depth trees on

the Wine dataset (Extra-Trees, K = 1, max_depth = b).

alcoho! [
volatile acidity [
color [
densicy [
total sulfur dioxide _
chlorides _
citric acid _
free sulfur dioxide _
sulphates -
fixed acidity -
residual sugar -
pt [
. . . . . .

0.00 0.05 0.10 0.15 0.20 0.25

Taking into account (some of) the biases
results in quite a different story !

0.30
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Outline

Implementing and accelerating random forests
p g g

28 /39



Implementation (suitinck et al., 2013)

Scikit-Learn

e Open source machine learning library for

Python ‘ E scikit

e Classical and well-established
algorithms

e Emphasis on code quality and usability

A long team effort

Time for building a Random Forest (relative to version 0.10)

1 0.99 0.98

m 010 =011 m 012 0.13 m 0.14 m0.15
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Implementation overview

e Modular implementation, designed with a strict separation of
concerns
m Builders : for building and connecting nodes into a tree
Splitters : for finding a split
Criteria : for evaluating the goodness of a split
Tree : dedicated data structure

o Efficient algorithmic formulation [See Louppe, 2014]

m Dedicated sorting procedure
m Efficient evaluation of consecutive splits

e Close to the metal, carefully coded, implementation
2300+ lines of Python, 3000+ lines of Cython, 1700+ lines of tests

# But we kept 1t stupid simple for users!
clf = RandomForestClassifier()

clf .fit(X_train, y_train)

y_pred = clf.predict(X_test)
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http://arxiv.org/abs/1407.7502

A winning strategy

Scikit-Learn implementation proves to be one of the fastest
among all libraries and programming languages.

14000
@ Scikit-Learn-RF
3 Scikit-Learn-ETs
3 OpenCV-RF
12000H=] openCV-ETs
[ OK3-RF
[ OK3-ETs
3 Weka-RF
10000 = r-rF
@ Orange-RF
@ 8000f
L
£
i=}
= L
& 6000 OpenCV
C++
4464.65
4000
3342.83
OK3
2000 ¢ Weka
Scikit-Learn 1518.14 71194, Java
Python, Cython 1027.91
203.01_211.53
0
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Computational complexity (Louppe, 2014)

] \ Average time complexity ‘

CART O(pN log® N)
Random Forest O(MKN log? N)
Extra-Trees O(MKN log N)

N : number of samples in £

e p : number of input variables

K : the number of variables randomly drawn at each node

N =0.632N.



Improving scalability through randomization
Motivation

e Randomization and averaging allow to improve accuracy by
reducing variance.

e As a nice side-effect, the resulting algorithms are fast and
embarrassingly parallel.

e Why not purposely exploit randomization to make the
algorithm even more scalable (and at least as accurate) ?

Problem

e Let assume a supervised learning problem of Ns samples
defined over N¢ features. Let also assume T computing
nodes, each with a memory capacity limited to M,,.x, with
Mmax < Ns x Nf.

e How to best exploit the memory constraint to obtain the most
accurate model, as quickly as possible ?
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A straightforward solution : Random Patches (Louppe et al., 2012)

L 1. Draw a subsample r of psN
random examples, with prN¢
I random features.

2. Build a base estimator on r.

3. Repeat 1-2 for a number T of
estimators.

4. Aggregate the predictions by
voting.

‘}& ‘{. % ps and pr are two meta-parameters that
should be selected

e such that psNs x prNe < Mpax
Ensemble
® to optimize accuracy

34/39



Impact of memory constraint

0.94
0.92F
0.90

0.88f

Accuracy

0.86

0.84f

0.82F

0.80f

0.1 0.2 0.3 0.4 0.5
Memory constraint
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Lessons learned from subsampling

e Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

e As a result, both memory consumption and training time can
be reduced, at low cost.

e With strong memory constraints, RP can exploit data better
than the other methods.

e Sampling features is critical to improve accuracy. Sampling
the examples only is often ineffective.
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Outline

©® Conclusions
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Opening the black box

e Random forests constitute one of the most robust and
effective machine learning algorithms for many problems.

e While simple in design and easy to use, random forests remain
however

m hard to analyze theoretically,
m non-trivial to interpret,
m difficult to implement properly.

e Through an in-depth re-assessment of the method, this
dissertation has proposed original contributions on these
issues.

38/39



Future works

Variable importances

e Theoretical characterization of variable importances in a finite
setting.

¢ (Re-analysis of) empirical studies based on variable
importances, in light of the results and conclusions of the
thesis.

e Study of variable importances in boosting.

Subsampling

e Finer study of subsampling statistical mechanisms.

e Smart sampling.
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Questions ?
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Backup slides
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Condorcet’s jury theorem

Let consider a group of M voters.

If each voter has an independent
probability p > % of voting for the correct
decision, then adding more voters increases
the probability of the majority decision to
be correct.

When M — oo, the probability that the
decision taken by the group is correct
approaches 1.
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Interpretation of P(X) (Louppe, 2014)

_ Ve{Egie{@s,o(x)}}
T VeEgiclose () HHEc{Vecleos,o(x)}}

Theorem. p(x)

In other words, it is the ratio between
e the variance due to the learning set and

e the total variance, accounting for random effects due to both
the learning set and the random perburbations.

p(x) — 1 when variance is mostly due to the learning set ;
p(x) — 0 when variance is mostly due to the random
perturbations;

p(x) > 0.
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