This repository contains data and code accompanying the manuscript:
Xu et al., Strategizing Renewable Energy Transitions to Preserve Sediment Transport Integrity (under review)
The study investigates optimal renewable energy deployment strategies in the Mekong River basin that balance carbon emission reduction targets with the preservation of critical sediment transport processes.
- Python 3.10.16 (Recommended via Miniconda)
- Gurobi Optimizer (with academic/commercial license)
pip install numpy==1.26.4 pandas==2.0.3 scipy==1.11.4 pyomo==6.9.1 xarray==2023.6.0 gurobipy==12.0.1
conda create -n mekong python=3.10.16
conda activate mekong
conda install -c conda-forge numpy=1.26.4 pandas=2.0.3 scipy=1.11.4 pyomo=6.9.1 xarray=2023.6.0
conda install -c gurobi gurobi
Run a single scenario with specified parameters:
python run_mekong_gurobi.py --carbon=<c> --sediment=<s> --limit=<l>
Where:
--carbon (<c>): Carbon emission constraint level (1-4, representing different carbon policy scenarios)
--sediment (<s>): Minimum sediment transport requirement (14-54, with 0.2 increments)
--limit (<l>): Transmission line scenario (1, 2, 4, or 6 representing different infrastructure configurations)
For comprehensive parameter space exploration, use the provided parallel execution script:
./parallel.sh
The script implements a parallelized sweep through:
-
4 transmission scenarios (limit)
-
4 carbon policy levels (carbon)
-
201 sediment transport constraints (sediment from 14 to 54 in 0.2 increments)
The parallel.sh
script uses GNU parallel to run N=10 concurrent processes for efficient computation.
For questions regarding the code or methodology, please contact Zhanwei Liu.