11
11
from semantic_kernel .connectors .redis import RedisCollectionTypes
12
12
from semantic_kernel .data .vector import VectorStore
13
13
from semantic_kernel .exceptions import MemoryConnectorConnectionException
14
- from tests .integration .memory .data_records import RAW_RECORD_ARRAY , RAW_RECORD_LIST
14
+ from tests .integration .memory .data_records import RAW_RECORD_LIST
15
15
from tests .integration .memory .vector_store_test_base import VectorStoreTestBase
16
16
17
17
logger : logging .Logger = logging .getLogger (__name__ )
@@ -38,19 +38,6 @@ class TestVectorStore(VectorStoreTestBase):
38
38
],
39
39
[
40
40
# region Redis
41
- pytest .param (
42
- "redis" ,
43
- "redis_json_array_data_model" ,
44
- {"collection_type" : RedisCollectionTypes .JSON },
45
- "dataclass_vector_data_model_array" ,
46
- None ,
47
- None ,
48
- None ,
49
- None ,
50
- 5 ,
51
- RAW_RECORD_ARRAY ,
52
- id = "redis_json_array_data_model" ,
53
- ),
54
41
pytest .param (
55
42
"redis" ,
56
43
"redis_json_list_data_model" ,
@@ -77,19 +64,6 @@ class TestVectorStore(VectorStoreTestBase):
77
64
RAW_RECORD_LIST ,
78
65
id = "redis_json_pandas_data_model" ,
79
66
),
80
- pytest .param (
81
- "redis" ,
82
- "redis_hashset_array_data_model" ,
83
- {"collection_type" : RedisCollectionTypes .HASHSET },
84
- "dataclass_vector_data_model_array" ,
85
- None ,
86
- None ,
87
- None ,
88
- None ,
89
- 5 ,
90
- RAW_RECORD_ARRAY ,
91
- id = "redis_hashset_array_data_model" ,
92
- ),
93
67
pytest .param (
94
68
"redis" ,
95
69
"redis_hashset_list_data_model" ,
@@ -118,19 +92,6 @@ class TestVectorStore(VectorStoreTestBase):
118
92
),
119
93
# endregion
120
94
# region Azure AI Search
121
- pytest .param (
122
- "azure_ai_search" ,
123
- "azure_ai_search_array_data_model" ,
124
- {},
125
- "dataclass_vector_data_model_array" ,
126
- None ,
127
- None ,
128
- None ,
129
- None ,
130
- 5 ,
131
- RAW_RECORD_ARRAY ,
132
- id = "azure_ai_search_array_data_model" ,
133
- ),
134
95
pytest .param (
135
96
"azure_ai_search" ,
136
97
"azure_ai_search_list_data_model" ,
@@ -159,19 +120,6 @@ class TestVectorStore(VectorStoreTestBase):
159
120
),
160
121
# endregion
161
122
# region Qdrant
162
- pytest .param (
163
- "qdrant" ,
164
- "qdrant_array_data_model" ,
165
- {},
166
- "dataclass_vector_data_model_array" ,
167
- None ,
168
- None ,
169
- None ,
170
- None ,
171
- 5 ,
172
- RAW_RECORD_ARRAY ,
173
- id = "qdrant_array_data_model" ,
174
- ),
175
123
pytest .param (
176
124
"qdrant" ,
177
125
"qdrant_list_data_model" ,
@@ -198,19 +146,6 @@ class TestVectorStore(VectorStoreTestBase):
198
146
RAW_RECORD_LIST ,
199
147
id = "qdrant_pandas_data_model" ,
200
148
),
201
- pytest .param (
202
- "qdrant_in_memory" ,
203
- "qdrant_in_memory_array_data_model" ,
204
- {},
205
- "dataclass_vector_data_model_array" ,
206
- None ,
207
- None ,
208
- None ,
209
- None ,
210
- 5 ,
211
- RAW_RECORD_ARRAY ,
212
- id = "qdrant_in_memory_array_data_model" ,
213
- ),
214
149
pytest .param (
215
150
"qdrant_in_memory" ,
216
151
"qdrant_in_memory_list_data_model" ,
@@ -237,19 +172,6 @@ class TestVectorStore(VectorStoreTestBase):
237
172
RAW_RECORD_LIST ,
238
173
id = "qdrant_in_memory_pandas_data_model" ,
239
174
),
240
- pytest .param (
241
- "qdrant" ,
242
- "qdrant_grpc_array_data_model" ,
243
- {"prefer_grpc" : True },
244
- "dataclass_vector_data_model_array" ,
245
- None ,
246
- None ,
247
- None ,
248
- None ,
249
- 5 ,
250
- RAW_RECORD_ARRAY ,
251
- id = "qdrant_grpc_array_data_model" ,
252
- ),
253
175
pytest .param (
254
176
"qdrant" ,
255
177
"qdrant_grpc_list_data_model" ,
@@ -278,24 +200,6 @@ class TestVectorStore(VectorStoreTestBase):
278
200
),
279
201
# endregion
280
202
# region Weaviate
281
- pytest .param (
282
- "weaviate_local" ,
283
- "weaviate_local_array_data_model" ,
284
- {},
285
- "dataclass_vector_data_model_array" ,
286
- None ,
287
- None ,
288
- None ,
289
- None ,
290
- 5 ,
291
- RAW_RECORD_ARRAY ,
292
- marks = pytest .mark .skipif (
293
- platform .system () != "Linux" ,
294
- reason = "The Weaviate docker image is only available on Linux"
295
- " but some GitHubs job runs in a Windows container." ,
296
- ),
297
- id = "weaviate_local_array_data_model" ,
298
- ),
299
203
pytest .param (
300
204
"weaviate_local" ,
301
205
"weaviate_local_list_data_model" ,
@@ -334,23 +238,6 @@ class TestVectorStore(VectorStoreTestBase):
334
238
),
335
239
# endregion
336
240
# region Azure Cosmos DB
337
- pytest .param (
338
- "azure_cosmos_db_no_sql" ,
339
- "azure_cosmos_db_no_sql_array_data_model" ,
340
- {},
341
- "dataclass_vector_data_model_array" ,
342
- None ,
343
- None ,
344
- "flat" ,
345
- None ,
346
- 5 ,
347
- RAW_RECORD_ARRAY ,
348
- marks = pytest .mark .skipif (
349
- platform .system () != "Windows" ,
350
- reason = "The Azure Cosmos DB Emulator is only available on Windows." ,
351
- ),
352
- id = "azure_cosmos_db_no_sql_array_data_model" ,
353
- ),
354
241
pytest .param (
355
242
"azure_cosmos_db_no_sql" ,
356
243
"azure_cosmos_db_no_sql_list_data_model" ,
@@ -387,19 +274,6 @@ class TestVectorStore(VectorStoreTestBase):
387
274
),
388
275
# endregion
389
276
# region Chroma
390
- pytest .param (
391
- "chroma" ,
392
- "chroma_array_data_model" ,
393
- {},
394
- "dataclass_vector_data_model_array" ,
395
- None ,
396
- None ,
397
- None ,
398
- None ,
399
- 5 ,
400
- RAW_RECORD_ARRAY ,
401
- id = "chroma_array_data_model" ,
402
- ),
403
277
pytest .param (
404
278
"chroma" ,
405
279
"chroma_list_data_model" ,
@@ -454,7 +328,10 @@ async def test_vector_store(
454
328
async with (
455
329
stores [store_id ]() as vector_store ,
456
330
vector_store .get_collection (
457
- collection_name , record_type , definition , ** collection_options
331
+ record_type = record_type ,
332
+ definition = definition ,
333
+ collection_name = collection_name ,
334
+ ** collection_options ,
458
335
) as collection ,
459
336
):
460
337
try :
@@ -468,7 +345,7 @@ async def test_vector_store(
468
345
pytest .fail (f"Failed to create collection: { exc } " )
469
346
470
347
# Upsert record
471
- await collection .upsert (record_type ([record ]) if record_type == pd .DataFrame else record_type (** record ))
348
+ await collection .upsert (record_type ([record ]) if record_type is pd .DataFrame else record_type (** record ))
472
349
# Get record
473
350
result = await collection .get (record ["id" ])
474
351
assert result is not None
0 commit comments