Description
Describe the bug
MEVD Built in embedding generation throws when used with AzureOpenAI with This model does not support specifying dimensions.
To Reproduce
Find RAGWithInMemoryVectorStoreAndPluginAsync
sample in samples
Update text embedding generator to azure open ai:
var textEmbeddingGenerator = new AzureOpenAIClient(new Uri(TestConfiguration.AzureOpenAIEmbeddings.Endpoint), new AzureCliCredential())
.GetEmbeddingClient(TestConfiguration.AzureOpenAIEmbeddings.DeploymentName)
.AsIEmbeddingGenerator();
Sample fails:
System.ClientModel.ClientResultException : HTTP 400 (invalid_request_error: )
This model does not support specifying dimensions.
Stack Trace:
ClientPipelineExtensions.ProcessMessageAsync(ClientPipeline pipeline, PipelineMessage message, RequestOptions options)
EmbeddingClient.GenerateEmbeddingsAsync(BinaryContent content, RequestOptions options)
EmbeddingClient.GenerateEmbeddingsAsync(IEnumerable`1 inputs, EmbeddingGenerationOptions options, CancellationToken cancellationToken)
OpenAIEmbeddingGenerator.GenerateAsync(IEnumerable`1 values, EmbeddingGenerationOptions options, CancellationToken cancellationToken)
InMemoryVectorStoreRecordCollection`2.UpsertAsync(IEnumerable`1 records, CancellationToken cancellationToken) line 280
WithPlugins.RAGWithInMemoryVectorStoreAndPluginAsync() line 62```
**Expected behavior**
Sample can generate embeddings
Metadata
Metadata
Assignees
Labels
Type
Projects
Status
Sprint: Done