Skip to content

paskl-ai/lintai

Repository files navigation

Lintai

Lintai is an experimental AI-aware static-analysis tool that spots LLM-specific security bugs (prompt-injection, insecure output handling, data-leakage …) before code ships.

Why Lintai? What it does
Traditional SAST can’t “see” how you build prompts, stream completions or store vectors. Lintai walks your AST, tags every AI sink (OpenAI, Anthropic, LangChain, …), follows wrapper chains, then asks an LLM to judge risk.

Requires Python ≥ 3.10


✨ Key features

  • Two analysis commands
    • lintai ai-inventory <src-code-path> – list every AI call and its caller chain
    • lintai scan <src-code-path> – run all detectors, emit JSON (with llm_usage summary)
  • LLM budget guard-rails – hard caps on requests / tokens / cost (LINTAI_MAX_LLM_*)
  • Modular detector registry (entry_points)
  • OWASP LLM Top-10 & MITRE ATT&CK baked in
  • DSL for custom rules
  • CI-friendly JSON output (SARIF soon)

⚠️ UI Notice

A React/Cytoscape UI is under active development – not shipped in this cut.


🚀 Quick start

1 · Install

pip install lintai                    # core only
pip install "lintai[openai]"          # + OpenAI detectors
# or  "lintai[anthropic]"  "lintai[gemini]"  "lintai[cohere]"
pip install "lintai[ui]"              # FastAPI server extras

2 · Enable LLM detectors (optional but highly recommended)

# .env  (minimal)
LINTAI_LLM_PROVIDER=openai                # azure / anthropic / gemini / cohere / dummy
LLM_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxx    # API key for above provider

# provider-specific knobs
LLM_MODEL_NAME=gpt-4.1-mini
LLM_ENDPOINT_URL=https://api.openai.com/v1/
LLM_API_VERSION=2025-01-01-preview         # Required for Azure

# hard budget caps
LINTAI_MAX_LLM_TOKENS=50000
LINTAI_MAX_LLM_COST_USD=10
LINTAI_MAX_LLM_REQUESTS=500

Lintai auto-loads .env; the UI writes the same file, so CLI & browser stay in sync.

3 · Run

lintai ai-inventory src/ --ai-call-depth 4
lintai scan src/

4 · Launch REST server (Optional, React UI coming soon)

lintai ui                     # REST docs at http://localhost:8501/api/docs

🔬 How LLM detectors work

LLM-powered rules collect the full source of functions that call AI frameworks, plus their caller chain, and ask an external LLM to classify OWASP risks.

Budget checks run before the call; actual usage is recorded afterwards.


🔧 Common flags

Flag Description
-l DEBUG Verbose logging
--ruleset <dir> Load custom YAML/JSON rules
--output <file> Write full JSON report instead of stdout

🧪 Sample scan output

{
  "llm_usage": {
    "tokens_used": 3544,
    "usd_used": 0.11,
    "requests": 6,
    "limits": { "tokens": 50000, "usd": 10, "requests": 500 }
  },
  "findings": [
    {
      "owasp_id": "LLM01",
      "severity": "blocker",
      "location": "services/chat.py:57",
      "message": "User-tainted f-string used in prompt",
      "fix": "Wrap variable in escape_braces()"
    }
  ]
}

📦 Directory layout

lintai/ ├── cli.py Typer entry-point ├── engine/ AST walker & AI-call analysis ├── detectors/ Static & LLM-backed rules ├── dsl/ Custom rule loader ├── llm/ Provider clients & token-budget manager ├── components/ Maps common AI frameworks → canonical types ├── core/ Finding & report model ├── ui/ FastAPI backend (+ React UI coming soon) └── tests/ Unit / integration tests

examples/ Sample code with insecure AI usage

🌐 REST API cheat-sheet

Method & path Body / Params Purpose
GET /api/health Liveness probe
GET /api/config Read current config
POST /api/config ConfigModel JSON Update settings (path, depth …)
GET /POST /api/env EnvPayload JSON Read / update non-secret .env
POST /api/secrets SecretPayload JSON Store API key (write-only)
POST /api/scan multipart files Run detectors on uploaded code
POST /api/inventory path=<dir> Inventory run on server-side folder
GET /api/runs List all runs + status
GET /api/results/{id} Fetch scan / inventory report

Auto-generated OpenAPI docs live at /api/docs.


📺 Roadmap

  • React JS UI support
  • SARIF + GitHub Actions template
  • Additional AI frameworks recognition and categorization
  • Lintai VS Code extension
  • Live taint-tracking

🤝 Contributing

  1. Star the repo ⭐
  2. git checkout -b feat/my-fix
  3. pytest -q (all green)
  4. Open a PR – or a draft PR early
  5. See CONTRIBUTING.md

🎨 Frontend Development

The UI is a React/TypeScript application. For development:

# Frontend development
cd lintai/ui/frontend
npm install
npm run dev    # Start dev server

# Build for production (development only)
python scripts/build-frontend.py

Note: Built frontend assets are not committed to git. They are built automatically during CI/CD for releases.


Created by Harsh ParandekarLinkedIn Licensed under Apache 2.0

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •