-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP294.cpp
103 lines (91 loc) · 1.99 KB
/
P294.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#define PRIME_LEN 16000
#define EVEN(a) (((a) & 1) == 0)
#define ODD(a) (((a) & 1) == 1)
typedef unsigned long ul;
class PrimeHandler {
bitset<PRIME_LEN> primes;
public:
void init() {
primes.set();
// Sieve primes:
for(int i = 0; i*i < PRIME_LEN; ++i) {
if(!primes[i])
continue;
// Mark all uneven multiples as non-prime:
int basePrime = 1+2*(i+1);
for(int multiple = 3; true; multiple += 2) {
int notAPrime = basePrime*multiple;
int notAPrimeI = notAPrime/2-1;
if(notAPrimeI >= PRIME_LEN)
break;
primes.set(notAPrimeI, false);
}
}
}
bool isPrime(long n) const {
if(n == 2)
return true;
if(n < 2 || (n%2==0))
return false;
return primes[n/2-1];
}
int nextPrime(int n) const {
int ni = n/2;
while(!primes[ni]) {
++ni;
}
return 1+(ni+1)*2;
}
int prevPrime(int n) const {
int ni = n/2-2;
while(!primes[ni])
--ni;
return 1+(ni+1)*2;
}
int numberOfDivisors(ul n) {
int ret = 1;
// Handle factor 2:
while(EVEN(n)) {
n >>= 1;
++ret;
}
ul prime = 3;
while(prime*prime <= n) {
int occurencesOfPrime = 1;
while(n % prime == 0) {
++occurencesOfPrime;
n /= prime;
}
ret *= occurencesOfPrime;
prime = nextPrime(prime);
}
if(prime <= n)
ret*=2; // n is also a factor.
return ret;
}
ul withMostDivisors(ul L, ul U) {
ul best = L;
int bestDivisors = numberOfDivisors(L);
for(ul i = L+1; i<=U; ++i) {
int divisorsI = numberOfDivisors(i);
if(divisorsI > bestDivisors) {
best = i;
bestDivisors = divisorsI;
}
}
return best;
}
};
int main() {
PrimeHandler ph;
ph.init();
ul N, U, L;
cin >> N;
for(ul cas = 0; cas < N; ++cas) {
cin >> U >> L;
if(U < L)
swap(U,L);
ul P = ph.withMostDivisors(L, U);
cout << "Between " << L << " and " << U << ", " << P << " has a maximum of " << ph.numberOfDivisors(P) << " divisors." << endl;
}
}