Skip to content

๐Ÿ’ก PseudoDiffusers: paper/code review and experimental findings related to computer vision generation and diffusion-based models

License

Notifications You must be signed in to change notification settings

Pseudo-Lab/pseudodiffusers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Welcome to PseudoDiffusers!!

This is the repository of PseudoDiffusers team.

๐Ÿ’ก Our aim is to review papers and code related to computer vision generation models, approach them theoretically, and conduct various experiments by fine-tuning diffusion based models.

About Us - PseudoLab

About Us - PseudoDiffusers

์ฐธ์—ฌ ๋ฐฉ๋ฒ•: ๋งค์ฃผ ์ˆ˜์š”์ผ ์˜คํ›„ 9์‹œ, ๊ฐ€์งœ์—ฐ๊ตฌ์†Œ Discord Room-DH ๋กœ ์ž…์žฅ!

Publications

DiffInject: Revisiting Debias via Synthetic Data Generation using Diffusion-based Style Injection
Donggeun Ko*, Sangwoo Jo*, Dongjun Lee, Namjun Park, Jaekwang KIM
CVPR 2024 Workshop
PDF

Contributors

  • ์กฐ์ƒ์šฐ [Sangwoo Jo] | Github | Linkedin |
  • ๋ฌธ๊ด‘์ˆ˜ [Kwangsu Mun] | Github | Linkedin |
  • ๊น€์ง€์ˆ˜ [Jisu Kim] | Github | Linkedin |
  • ๋ฐ•๋ฒ”์ˆ˜ [Beomsoo Park] | Github | Linkedin |
  • ์ง€์Šนํ™˜ [Seunghwan Ji] | Github | Linkedin |
  • ๊ณ ๋™๊ทผ [Donggeun Sean Ko] | Github | Linkedin |
  • ์กฐ๋‚จ๊ฒฝ [Namkyeong Cho] | Github | Linkedin |
  • ๊น€์„ ํ›ˆ [SeonHoon Kim] | Github | Linkedin |
  • ์ด์ค€ํ˜• [Junhyoung Lee] | Github | Linkedin |
  • ์กฐํ˜•์„œ [Hyoungseo Cho] | Github | Linkedin |
  • ์œ ์ •ํ™” [Jeonghwa Yoo] | Github | Linkedin |
  • ๋ฐ•์„ธํ™˜ [Sehwan Park] | Github | Linkedin |
  • ์†ก๊ฑดํ•™ [Geonhak Song] | Github | Linkedin |
  • ํ•œ๋™ํ˜„ [Donghyun Han] | GitHub | Linkedin |
  • ์ด์ฐฝํ™˜ [ChangHwan Lee] | Github | Linkedin |
  • ์œ ๊ฒฝ๋ฏผ [Kyeongmin Yu] | Github | Linkdedin |
  • ์ด์ •์ธ [Jeongin Lee] | Github | Linkedin |
  • ๊น€ํ˜„์ˆ˜ [Hyunsoo Kim] | Github | Linkedin |

Reviewed Papers

idx Date Presenter Paper / Code
1 2023.03.29 Sangwoo Jo Auto-Encoding Variational Bayes (ICLR 2014)
Generative Adversarial Networks (NIPS 2014)
2 2023.04.05 Kwangsu Mun
Jisu Kim
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (ICCV 2017)
A Style-Based Generator Architecture for Generative Adversarial Networks (CVPR 2019)
3 2023.04.12 Beomsoo Park
Seunghwan Ji
Denoising Diffusion Probabilistic Models (NeurIPS 2020)
Denoising Diffusion Implicit Models (ICLR 2021)
4 2023.05.10 Donggeun Sean Ko Diffusion Models Beat GANs in Image Synthesis (NeurIPS 2021)
Zero-Shot Text-to-Image Generation (ICML 2021)
5 2023.05.17 Namkyeong Cho
Sangwoo Jo
High-Resolution Image Synthesis with Latent Diffusion Models (CVPR 2022)
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation (CVPR 2023)
6 2023.05.24 Kwangsu Mun
Jisu Kim
An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion
Adding Conditional Control to Text-to-Image Diffusion Models
7 2023.05.31 Beomsoo Park
Seunghwan Ji
LoRA: Low-Rank Adaptation of Large Language Models
Multi-Concept Customization of Text-to-Image Diffusion (CVPR 2023)
8 2023.08.30 Donggeun Sean Ko
Sangwoo Jo
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting (CVPR 2023)
9 2023.09.06 SeonHoon Kim
Seunghwan Ji
Hierarchical Text-Conditional Image Generation with CLIP Latents
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations (ICLR 2022)
10 2023.09.13 Namkyeong Cho
Junhyoung Lee
DeepFloyd IF
SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis
11 2023.09.20 HyoungSeo Cho
Sangwoo Jo
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models
T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
12 2023.09.27 Sehwan Park
Junhyoung Lee
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models (ICML 2022)
Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
13 2023.10.11 Jeonghwa Yoo
SeonHoon Kim
Synthetic Data from Diffusion Models Improves ImageNet Classification
Your Diffusion Model is Secretly a Zero-Shot Classifier (ICCV 2023)
14 2023.10.18 Seunghwan Ji A Study on the Evaluation of Generative Models
15 2023.10.25 Sangwoo Jo
HyoungSeo Cho
Progressive Distillation for Fast Sampling of Diffusion Models (ICLR 2022)
ConceptLab: Creative Generation using Diffusion Prior Constraints
16 2023.11.01 SeonHoon Kim
Jeonghwa Yoo
BBDM: Image-to-image Translation with Brownian Bridge Diffusion Models (CVPR 2023)
Make-A-Video: Text-to-Video Generation without Text-Video Data
17 2023.11.15 Sehwan Park
Junhyoung Lee
Diffusion Models already have a Semantic Latent Space (ICLR 2023)
Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models (CVPR 2023)
18 2023.11.29 Donggeun Sean Ko Video Diffusion Models
19 2024.03.13 Geonhak Song Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation
DreaMoving: A Human Video Generation Framework based on Diffusion Models
20 2024.03.20 Junhyoung Lee Muse: Text-To-Image Generation via Masked Generative Transformers (ICML 2023)
21 2024.03.27 Seunghwan Ji Scaling up GANs for Text-to-Image Synthesis (CVPR 2023)
22 2024.04.03 Sangwoo Jo Consistency Models (ICML 2023)
23 2024.04.24 Donghyun Han Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference
24 2024.05.01 Jeonghwa Yoo DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion
25 2024.05.08 Sehwan Park LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models (CVPR2024)
26 2024.05.15 Kyeongmin Yu AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning (ICLR 2024)
27 2024.05.22 Jeongin Lee NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (CVPR 2020)
28 2024.05.29 Hyunsoo Kim 3D Gaussian Splatting for Real-Time Radiance Field Rendering (SIGGRAPH 2023)
29 2024.06.12 Donggeun Sean Ko DiffInject (CVPR Workshop 2024)
30 2024.06.26 Jeonghwa Yoo
Kyeongmin Yu
Point-E: A System for Generating 3D Point Clouds from Complex Prompts
Shap-E: Generating Conditional 3D Implicit Function
31 2024.07.03 Geonhak Song DreamFusion: Text-to-3D using 2D Diffusion (ICLR 2023)
32 2024.07.17 Sangwoo Jo
Junhyoung Lee
Magic3D: High-Resolution Text-to-3D Content Creation (CVPR 2023)
Scalable Diffusion Models with Transformers (ICCV 2023)
33 2024.07.24 Jeongin Lee
Hyunsoo Kim
DreamBooth3D: Subject-Driven Text-to-3D Generation (ICCV 2023)
Style Aligned Image Generation via Shared Attention (CVPR 2024)
34 2024.09.18 Sangwoo Jo One-step Image Translation with Text-to-Image Models
35 2024.09.25 Joongwon Lee One-step Diffusion with Distribution Matching Distillation (CVPR 2024)
36 2024.10.02 Donghyun Han LCM-LoRA: A Universal Stable-Diffusion Acceleration Module
37 2024.10.09 Kyeongmin Yu IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models
38 2024.10.16
39 2024.10.30 Jeongin Lee Zero-1-to-3: Zero-shot One Image to 3D Object (ICCV 2023)
40 2024.11.06 Geonhak Song MVDream: Multi-view Diffusion for 3D Generation (ICLR 2024 Poster)
41 2024.11.13 Kyeongmin Yu ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation
42 2024.11.27 Jeonghwa Yoo One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
nn 2024.12.04 Joongwon Lee
Donghyun Han
LRM: Large Reconstruction Model for Single Image to 3D
LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation (ECCV 2024 (Oral))
nn 2024.12.11 Kyeongmin Yu # DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation
nn 2024.12.18 Geonhak Song
Donggeun Sean Ko
CAT3D: Create Anything in 3D with Multi-View Diffusion Models (NeurIPS 2024 (Oral))
Coin3D: Controllable and Interactive 3D Assets Generation with Proxy-Guided Conditioning

Jupyter Book Update Procedure

  1. Clone the repo on your local computer
git clone https://github.com/Pseudo-Lab/text-to-image-generation.git
  1. Install required packages
pip install jupyter-book==0.15.1
pip install ghp-import==2.1.0
  1. Change the contents in book/docs folder with the following format and update _toc.yml file accordingly

  • 3.1. Add information section on top of the markdown page
- **Title:** {๋…ผ๋ฌธ ์ œ๋ชฉ}, {ํ•™ํšŒ/ํ•™์ˆ ์ง€๋ช…}

- **Reference**
    - Paper:  [{๋…ผ๋ฌธ ๋งํฌ}]({๋…ผ๋ฌธ ๋งํฌ})
    - Code: [{code ๋งํฌ}]({code ๋งํฌ})
    - Review: [{review ๋งํฌ}]({review ๋งํฌ})
    
- **Author:** {๋ฆฌ๋ทฐ ์ž‘์„ฑ์ž ๊ธฐ์ž…}

- **Edited by:** {๋ฆฌ๋ทฐ ํŽธ์ง‘์ž ๊ธฐ์ž…}

- **Last updated on {์ตœ์ข… update ๋‚ ์งœ e.g. Apr. 12, 2023}**
  • 3-2. Use the following template when displaying images
:::{figure-md} 
<img src="{์ฃผ์†Œ}" alt="{tag๋ช…}" class="bg-primary mb-1" width="{800px}">

{์ œ๋ชฉ} \  (source: {์ถœ์ฒ˜})
:::
  • 3-3. Update _toc.yml file accordingly
format: jb-book
root: intro
parts:
- caption: Paper/Code Review
  chapters:
  - file: docs/review/vae
  - file: docs/review/gan
  1. Build the book using Jupyter Book command
jupyter-book build ./book
  1. Sync your local and remote repositories
cd pseudodiffusers
git add .
git commit -m "adding my first book!"
git push
  1. Publish your Jupyter Book with Github Pages
ghp-import -n -p -f book/_build/html -m "initial publishing"

About

๐Ÿ’ก PseudoDiffusers: paper/code review and experimental findings related to computer vision generation and diffusion-based models

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published