Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add real time face blurring script #411

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 164 additions & 0 deletions Real-Time-Face-Blurring-Tool/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
import os
import cv2
import numpy as np

# Load DNN model once to avoid reloading it for each frame
def load_face_detection_model():
"""Loads the pre-trained face detection model."""
prototxt_path = "./protocol/deploy.prototxt.txt"
model_path = "./model/res10_300x300_ssd_iter_140000_fp16.caffemodel"
return cv2.dnn.readNetFromCaffe(prototxt_path, model_path)

# Global variable to store the model (avoids reloading it multiple times)
face_net = load_face_detection_model()

#save video function
def save_video(video, output_path):

# Get video properties
fps = video.get(cv2.CAP_PROP_FPS)
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
res = (frame_width, frame_height)

# Define the video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # MP4 codec
out = cv2.VideoWriter(output_path, fourcc, fps, res)
return out

def blur_faces(image, confidence_threshold=0.5, blur_strength=61):
"""
Detects and blurs faces in an image.

Parameters:
image (numpy.ndarray): Input image.
confidence_threshold (float): Minimum confidence for face detection.
blur_strength (int): Kernel size for Gaussian blur (must be odd).

Returns:
numpy.ndarray: Image with blurred faces.
"""
(h, w) = image.shape[:2]

# Prepare the image for the deep learning model
blob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)),
1.0,
(300, 300),
(104.0, 177.0, 123.0)
)

# Perform detection
face_net.setInput(blob)
detections = face_net.forward()

# Process detections
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]

if confidence > confidence_threshold:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")

# Ensure coordinates stay within image bounds
startX, startY = max(0, startX), max(0, startY)
endX, endY = min(w, endX), min(h, endY)

# Extract and blur face ROI
face_roi = image[startY:endY, startX:endX]
blurred_face = cv2.GaussianBlur(face_roi, (blur_strength, blur_strength), 0)
image[startY:endY, startX:endX] = blurred_face

return image


def blur_faces_images(image_path):
"""
Load an image, blurs detected faces in each frame, and saves the output.

Parameters:
image_path (str): Path to the input image.
"""

# Load and process the image
image = cv2.imread(image_path)
blurred_image = blur_faces(image)

# Create output folder
name = os.path.basename(image_path)
output_folder = "./output_images/"
os.makedirs(output_folder, exist_ok=True)

# Save the processed image in the right folder
output_path = os.path.join(output_folder, name)
cv2.imwrite(output_path, blurred_image)

def blur_faces_videos(video_path):
"""
Processes a video, blurs detected faces in each frame, and saves the output.

Parameters:
video_path (str): Path to the input video.
"""

name = os.path.basename(video_path)
output_folder = "./output_videos/"
os.makedirs(output_folder, exist_ok=True)

# Ensure the output file has a valid extension
output_path = os.path.join(output_folder, os.path.splitext(name)[0] + "_blurred.mp4")

video, output_path, out= save_video(video_path)

while True:
ret, frame = video.read()
if not ret:
break

blurred_frame = blur_faces(frame) # Apply face blurring
cv2.imshow('Blurred Video', blurred_frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

out.write(blurred_frame) # Save the processed frame

# Release resources
out.release()
video.release()
cv2.destroyAllWindows()
print(f"Video saved at: {output_path}")


def blur_face_webcam():
"""
Captures video from the webcam, applies face blurring in real-time,
and allows stopping the recording by pressing 'q'.
"""

video = cv2.VideoCapture(0) # Open webcam
output_folder = "./output_videos/"
os.makedirs(output_folder, exist_ok=True)

# Ensure the output file has a valid extension
output_path = os.path.join(output_folder, ("webcam_blurred.mp4"))

out= save_video(video, output_path)
while True:
ret, frame = video.read()
if not ret:
break

blurred_frame = blur_faces(frame)
cv2.imshow('Blurred Webcam Feed', blurred_frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break
out.write(blurred_frame) # Save the processed frame

# Release resources
out.release()
video.release()
cv2.destroyAllWindows()
print(f"Video saved at: {output_path}")

Binary file not shown.
Loading
Oops, something went wrong.