-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathabstractarray.jl
431 lines (367 loc) · 19.7 KB
/
abstractarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
using StaticArrays, Test, LinearAlgebra
@testset "AbstractArray interface" begin
@testset "size and length" begin
m = @SMatrix [1 2 3; 4 5 6; 7 8 9; 10 11 12]
@test length(m) == 12
@test IndexStyle(m) == IndexLinear()
@test Base.isassigned(m, 2, 2) == true
@test eachindex(m) isa SOneTo
end
@testset "axes" begin
v = @SVector [1, 2, 3]
@test @inferred(axes(v)) == (SOneTo(3),)
for T in (Adjoint, Transpose)
@test @inferred(axes(T(v))) == (SOneTo(1), SOneTo(3))
end
m = @SMatrix [1 2; 3 4]
@test @inferred(axes(m)) == (SOneTo(2), SOneTo(2))
for T in (Adjoint, Transpose, Diagonal, Symmetric, Hermitian, UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular)
@test @inferred(axes(T(m))) == (SOneTo(2), SOneTo(2))
end
end
@testset "strides" begin
m1 = MArray{Tuple{3, 4, 5}}(rand(Int, 3, 4, 5))
m2 = SizedArray{Tuple{3,4,5}}(rand(Int, 3, 4, 5))
@test strides(m1) === (1, 3, 12)
@test strides(m2) === (1, 3, 12)
end
@testset "similar_type" begin
@test @inferred(similar_type(SVector{3,Int})) == SVector{3,Int}
@test @inferred(similar_type(@SVector [1,2,3])) == SVector{3,Int}
@test @inferred(similar_type(SVector{3,Int}, Float64)) == SVector{3,Float64}
@test @inferred(similar_type(SMatrix{3,3,Int,9}, Size(2))) == SVector{2, Int}
@test @inferred(similar_type(SMatrix{3,3,Int,9}, Float64, Size(2))) == SVector{2, Float64}
@test @inferred(similar_type(SMatrix{3,3,Int,9}, Float64, Size(2))) == SVector{2, Float64}
@test @inferred(similar_type(SMatrix{3,3,Int,9}, Float64)) == SMatrix{3, 3, Float64, 9}
@test @inferred(similar_type(SVector{2,Int}, Size(3,3))) == SMatrix{3, 3, Int, 9}
@test @inferred(similar_type(SVector{2,Int}, Float64, Size(3,3))) == SMatrix{3, 3, Float64, 9}
@test @inferred(similar_type(SArray{Tuple{4,4,4},Int,3,64}, Float64)) == SArray{Tuple{4,4,4}, Float64, 3, 64}
@test @inferred(similar_type(SVector{2,Int}, Size(3,3,3))) == SArray{Tuple{3,3,3}, Int, 3, 27}
@test @inferred(similar_type(SVector{2,Int}, Float64, Size(3,3,3))) == SArray{Tuple{3,3,3}, Float64, 3, 27}
# Some specializations for the mutable case
@test @inferred(similar_type(MVector{3,Int}, Float64)) == MVector{3,Float64}
@test @inferred(similar_type(MMatrix{3,3,Int,9}, Size(2))) == MVector{2, Int}
@test @inferred(similar_type(MMatrix{3,3,Int,9}, Float64, Size(2))) == MVector{2, Float64}
@test @inferred(similar_type(MMatrix{3,3,Int,9}, Float64, Size(2))) == MVector{2, Float64}
@test @inferred(similar_type(MMatrix{3,3,Int,9}, Float64)) == MMatrix{3, 3, Float64, 9}
@test @inferred(similar_type(MVector{2,Int}, Size(3,3))) == MMatrix{3, 3, Int, 9}
@test @inferred(similar_type(MVector{2,Int}, Float64, Size(3,3))) == MMatrix{3, 3, Float64, 9}
@test @inferred(similar_type(MArray{Tuple{4,4,4},Int,3,64}, Float64)) == MArray{Tuple{4,4,4}, Float64, 3, 64}
@test @inferred(similar_type(MVector{2,Int}, Size(3,3,3))) == MArray{Tuple{3,3,3}, Int, 3, 27}
@test @inferred(similar_type(MVector{2,Int}, Float64, Size(3,3,3))) == MArray{Tuple{3,3,3}, Float64, 3, 27}
# wrapped mutable cases (issue #828)
for Wrapper in [Symmetric, Hermitian, Adjoint, Transpose, UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular]
@test @inferred(similar_type(Wrapper{Int,MArray{Tuple{4,4},Int,2,16}}, Float64)) === MArray{Tuple{4,4}, Float64, 2, 16}
end
@test @inferred(similar_type(Diagonal{Int,MArray{Tuple{4},Int,1,4}}, Float64)) === MArray{Tuple{4,4}, Float64, 2, 16}
end
@testset "similar" begin
sv = @SVector [1,2,3]
sm = @SMatrix [1 2; 3 4]
sa = SArray{Tuple{1,1,1},Int,3,1}((1,))
sn = @SVector [1, missing]
@test isa(@inferred(similar(sv)), MVector{3,Int})
@test isa(@inferred(similar(sv, Float64)), MVector{3,Float64})
@test isa(@inferred(similar(sv, Size(4))), MVector{4,Int})
@test isa(@inferred(similar(sv, Float64, Size(4))), MVector{4,Float64})
@test isa(@inferred(similar(sm)), MMatrix{2,2,Int,4})
@test isa(@inferred(similar(sm, Float64)), MMatrix{2,2,Float64,4})
@test isa(@inferred(similar(sv, Size(3,3))), MMatrix{3,3,Int,9})
@test isa(@inferred(similar(sv, Float64, Size(3,3))), MMatrix{3,3,Float64,9})
@test isa(@inferred(similar(sn)), SizedVector{2, Union{Missing, Int}})
@test isa(@inferred(similar(sn, Float64, Size(3, 3))), MMatrix{3, 3, Float64, 9})
@test isa(@inferred(similar(sa)), MArray{Tuple{1,1,1},Int,3,1})
@test isa(@inferred(similar(SArray{Tuple{1,1,1},Int,3,1})), MArray{Tuple{1,1,1},Int,3,1})
@test isa(@inferred(similar(sa, Float64)), MArray{Tuple{1,1,1},Float64,3,1})
@test isa(@inferred(similar(SArray{Tuple{1,1,1},Int,3,1}, Float64)), MArray{Tuple{1,1,1},Float64,3,1})
@test isa(@inferred(similar(sv, Size(3,3,3))), MArray{Tuple{3,3,3},Int,3,27})
@test isa(@inferred(similar(sv, Float64, Size(3,3,3))), MArray{Tuple{3,3,3},Float64,3,27})
@test isa(@inferred(similar(Diagonal{Int}, Size(2,2))), MArray{Tuple{2, 2}, Int, 2, 4})
@test isa(@inferred(similar(SizedArray, Int, Size(2,2))), SizedArray{Tuple{2, 2}, Int, 2, 2})
@test isa(@inferred(similar(Matrix{Int}, Int, Size(2,2))), SizedArray{Tuple{2, 2}, Int, 2, 2})
@testset "disambiguate similar" begin
struct CustomArray{T} <: AbstractVector{T}
sz :: Int
end
Base.size(C::CustomArray) = (C.sz,)
Base.getindex(C::CustomArray{T}, i::Int) where {T} = T(i)
Base.similar(C::CustomArray, ::Type{T}, ax::Tuple{Vararg{Int}}) where {T} =
Array{T}(undef, ax)
function Base.similar(C::CustomArray, ::Type{T}, ax::Tuple{Vararg{Union{Int, SOneTo, Base.OneTo{Int}}}}) where {T}
sz = last.(ax)
Array{T}(undef, sz)
end
c = CustomArray{Int}(4)
for (ax, sz) in (((SOneTo(2), Base.OneTo(3)), (2,3)),
((2, SOneTo(2), Base.OneTo(3)), (2,2,3)))
for A in (similar(c, Float64, ax), similar(c, Float64, ax...))
@test A isa Array{Float64, length(sz)}
@test size(A) == sz
end
end
@test similar(c, ()) isa Array{Int,0}
@test similar(c, Float64, ()) isa Array{Float64,0}
@test size(similar(zeros(), (1,1,1,SOneTo(1)))) == (1,1,1,1)
# ensure that the more specific Base method works
@test similar(1:2, ()) isa AbstractArray{Int,0}
end
end
@testset "similar and Base.Slice/IdentityUnitRange (issues #548, #556)" begin
v = @SVector [1,2,3]
m = @SMatrix [1 2 3; 4 5 6]
@test similar(v, Int, SOneTo(3)) isa MVector{3,Int}
@test similar(v, Int, SOneTo(3), SOneTo(4)) isa MMatrix{3,4,Int}
@test similar(v, Int, 3, SOneTo(4)) isa Matrix
@test similar(v, SOneTo(3)) isa MVector{3,Int}
@test similar(v, SOneTo(3), SOneTo(4)) isa MMatrix{3,4,Int}
@test similar(v, 3, SOneTo(4)) isa Matrix
@test m[:, 1:2] isa Matrix
@test m[:, [true, false, false]] isa Matrix
@test m[:, SOneTo(2)] isa SMatrix{2, 2, Int}
@test m[:, :] isa SMatrix{2, 3, Int}
@test m[:, 1] isa SVector{2, Int}
@test m[2, :] isa SVector{3, Int}
# Test case that failed in AstroLib.jl
r = @view(m[:, 2:3]) * @view(v[1:2])
@test r == m[:, 2:3] * v[1:2] == Array(m)[:, 2:3] * Array(v)[1:2]
end
@testset "reshape" begin
@test @inferred(reshape(SVector(1,2,3,4), axes(SMatrix{2,2}(1,2,3,4)))) === SMatrix{2,2}(1,2,3,4)
@test @inferred(reshape(SVector(1,2,3,4), Size(2,2))) === SMatrix{2,2}(1,2,3,4)
@test @inferred(reshape([1,2,3,4], Size(2,2)))::SizedArray{Tuple{2,2},Int,2,1} == [1 3; 2 4]
@test @inferred(reshape([1,2,3,4], axes(SMatrix{2,2}(1,2,3,4))))::SizedArray{Tuple{2,2},Int,2,1} == [1 3; 2 4]
@test @inferred(reshape([1 2 3 4], axes(SMatrix{2,2}(1,2,3,4))))::SizedArray{Tuple{2,2},Int,2,2} == [1 3; 2 4]
@test_throws DimensionMismatch reshape([1 2; 3 4], Size(2,2,2))
@test_throws DimensionMismatch reshape([1 2 3], axes(SMatrix{2,2}(1,2,3,4)))
@test @inferred(vec(SMatrix{2, 2}([1 2; 3 4])))::SVector{4,Int} == [1, 3, 2, 4]
a = @MVector [1, 2, 3, 4]
@test @inferred(vec(a)) === a
as = SizedVector(a)
@test @inferred(vec(as)) === as
# AbstractArray
# CartesianIndex
@test reshape(view(ones(4, 4), 1:4, 1:2), Size(4, 2)) == SMatrix{4,2}(ones(4, 2))
# IndexLinear
@test reshape(view(ones(4, 4), 1, 1:4), Size(4, 1)) == SMatrix{4,1}(ones(4, 1))
@test_throws DimensionMismatch reshape(view(ones(4,4), 1:4, 1:2), Size(5, 2))
# mutation
m = @MMatrix [1 2; 3 4]
mr = reshape(m, SOneTo(4))
mr[2] = 10
@test m == SA[1 2; 10 4]
mrs = reshape(m, Size(4))
mrs[2] = 10
@test m == SA[1 2; 10 4]
ms = SizedMatrix{2,2}([1 2; 3 4])
msr = reshape(ms, SOneTo(4))
msr[2] = 10
@test ms == SA[1 2; 10 4]
end
@testset "copy" begin
M = [1 2; 3 4]
SM = SMatrix{2, 2}(M)
MM = MMatrix{2, 2}(M)
SizeM = SizedMatrix{2,2}(M)
@test @inferred(copy(SM)) === @SMatrix [1 2; 3 4]
@test @inferred(copy(MM))::MMatrix == M
@test copy(SM).data !== M
@test copy(SizeM).data !== M
end
@testset "reverse" begin
@test @inferred(reverse(SVector(1, 2, 3))) ≡ SVector(3, 2, 1)
m = MVector(1, 2, 3)
@test @inferred(reverse(m))::typeof(m) == MVector(3, 2, 1)
end
@testset "rotate" begin
M = [1 2; 3 4]
SM = SMatrix{2, 2}(M)
@test @inferred(rotl90(SM)) === @SMatrix [2 4; 1 3]
@test @inferred(rot180(SM)) === @SMatrix [4 3; 2 1]
@test @inferred(rotr90(SM)) === @SMatrix [3 1; 4 2]
M23 = rand(2, 3)
SM23 = SMatrix{2, 3}(M23)
@test @inferred(rotl90(SM23)) == rotl90(M23)
@test @inferred(rot180(SM23)) == rot180(M23)
@test @inferred(rotr90(SM23)) == rotr90(M23)
end
@testset "Conversion to AbstractArray" begin
# Issue #746
# conversion to AbstractArray changes the eltype from Int to Float64
sv = SVector(1,2)
@test @inferred(convert(AbstractArray{Float64}, sv)) isa SVector{2,Float64}
@test @inferred(convert(AbstractVector{Float64}, sv)) isa SVector{2,Float64}
@test convert(AbstractArray{Float64}, sv) == sv
@test convert(AbstractArray{Int}, sv) === sv
sm = SMatrix{2,2}(1,2,3,4)
@test @inferred(convert(AbstractArray{Float64,2}, sm)) isa SMatrix{2,2,Float64}
@test convert(AbstractArray{Float64,2}, sm) == sm
@test convert(AbstractArray{Int,2}, sm) === sm
mv = MVector(1, 2, 3)
@test @inferred(convert(AbstractArray{Float64}, mv)) isa MVector{3,Float64}
@test @inferred(convert(AbstractVector{Float64}, mv)) isa MVector{3,Float64}
@test convert(AbstractArray{Float64}, mv) == mv
@test convert(AbstractArray{Int}, mv) === mv
mm = MMatrix{2, 2}(1, 2, 3, 4)
@test @inferred(convert(AbstractArray{Float64,2}, mm)) isa MMatrix{2,2,Float64}
@test convert(AbstractArray{Float64,2}, mm) == mm
@test convert(AbstractArray{Int,2}, mm) === mm
# Test some of the types in StaticMatrixLike
sym = Symmetric(SA[1 2; 2 3])
@test @inferred(convert(AbstractArray{Float64}, sym)) isa Symmetric{Float64,SMatrix{2,2,Float64,4}}
@test @inferred(convert(AbstractArray{Float64,2}, sym)) isa Symmetric{Float64,SMatrix{2,2,Float64,4}}
@test convert(AbstractArray{Float64}, sym) == sym
her = Hermitian(SA[1 2+im; 2-im 3])
@test @inferred(convert(AbstractArray{ComplexF64}, her)) isa Hermitian{ComplexF64,SMatrix{2,2,ComplexF64,4}}
@test convert(AbstractArray{ComplexF64}, her) == her
diag = Diagonal(SVector(1,2))
@test @inferred(convert(AbstractArray{Float64}, diag)) isa Diagonal{Float64,SVector{2,Float64}}
@test convert(AbstractArray{Float64}, diag) == diag
# The following cases currently convert the SMatrix into an MMatrix, because
# the constructor in Base invokes `similar`, rather than `convert`, on the static
# array. This was fixed in https://github.com/JuliaLang/julia/pull/40831; so should
# work from Julia v1.8.0-DEV.55
trans = Transpose(SVector(1,2))
@test_was_once_broken v"1.8.0-DEV.55" @inferred(convert(AbstractArray{Float64}, trans)) isa Transpose{Float64,SVector{2,Float64}}
adj = Adjoint(SVector(1,2))
@test_was_once_broken v"1.8.0-DEV.55" @inferred(convert(AbstractArray{Float64}, adj)) isa Adjoint{Float64,SVector{2,Float64}}
uptri = UpperTriangular(SA[1 2; 0 3])
@test_was_once_broken v"1.8.0-DEV.55" @inferred(convert(AbstractArray{Float64}, uptri)) isa UpperTriangular{Float64,SMatrix{2,2,Float64,4}}
lotri = LowerTriangular(SA[1 0; 2 3])
@test_was_once_broken v"1.8.0-DEV.55" @inferred(convert(AbstractArray{Float64}, lotri)) isa LowerTriangular{Float64,SMatrix{2,2,Float64,4}}
unituptri = UnitUpperTriangular(SA[1 2; 0 1])
@test_was_once_broken v"1.8.0-DEV.55" @inferred(convert(AbstractArray{Float64}, unituptri)) isa UnitUpperTriangular{Float64,SMatrix{2,2,Float64,4}}
unitlotri = UnitLowerTriangular(SA[1 0; 2 1])
@test_was_once_broken v"1.8.0-DEV.55" @inferred(convert(AbstractArray{Float64}, unitlotri)) isa UnitLowerTriangular{Float64,SMatrix{2,2,Float64,4}}
end
@testset "type inference in length" begin
s1 = SA[1,2];
s2 = SA[1,2,3];
v = [s1, s2];
f(v, i) = length(v[i]);
for i in 1:2
@test (@inferred f(v, i)) == length(v[i])
end
end
@testset "reduced_indices" begin
s = SArray{Tuple{2,2,2},Int,3,8}((1,2,3,4,5,6,7,8))
a = Array(s)
for i in 1:ndims(s)
rs = @inferred Base.reduced_indices(axes(s), i)
@test rs == Base.reduced_indices(axes(a), i)
end
end
end
@testset "permutedims" begin
# vector -> one-row matrix
@test @inferred(permutedims(SVector(1,2,3))) === SMatrix{1,3}(1,2,3)
@test @inferred(permutedims(MVector(1,2,3))) isa MMatrix{1,3}
@test @inferred(permutedims(MVector(1,2,3))) == [1 2 3]
@test @inferred(permutedims(SizedVector{3}([1,2,3]))) isa SizedMatrix{1,3}
@test @inferred(permutedims(SizedVector{3}([1,2,3]))) == [1 2 3]
# matrix
@test @inferred(permutedims(SMatrix{2,2}(1,2,3,4))) === SMatrix{2,2}(1,3,2,4)
A = rand(2,3)
@test @inferred(permutedims(SMatrix{2,3}(A))) === SMatrix{3,2}(A')
@test @inferred(permutedims(MMatrix{2,3}(A))) isa MMatrix{3,2}
@test @inferred(permutedims(MMatrix{2,3}(A))) == A'
@test @inferred(permutedims(SizedMatrix{2,3}(A))) isa SizedMatrix{3,2}
@test @inferred(permutedims(SizedMatrix{2,3}(A))) == A'
end
@testset "vcat() and hcat()" begin
@test @inferred(vcat(SVector(1,2,3))) === SVector(1,2,3)
@test @inferred(hcat(SVector(1,2,3))) === SMatrix{3,1}(1,2,3)
@test @inferred(hcat(SMatrix{3,1}(1,2,3))) === SMatrix{3,1}(1,2,3)
@test @inferred(vcat(SVector(1,2,3), SVector(4,5,6))) === SVector(1,2,3,4,5,6)
@test @inferred(hcat(SVector(1,2,3), SVector(4,5,6))) === @SMatrix [1 4; 2 5; 3 6]
@test_throws DimensionMismatch vcat(SVector(1,2,3), @SMatrix [1 4; 2 5])
@test_throws DimensionMismatch hcat(SVector(1,2,3), SVector(4,5))
@test @inferred(vcat(@SMatrix([1;2;3]), SVector(4,5,6))) === @SMatrix([1;2;3;4;5;6])
@test @inferred(vcat(SVector(1,2,3), @SMatrix([4;5;6]))) === @SMatrix([1;2;3;4;5;6])
@test @inferred(hcat(@SMatrix([1;2;3]), SVector(4,5,6))) === @SMatrix [1 4; 2 5; 3 6]
@test @inferred(hcat(SVector(1,2,3), @SMatrix([4;5;6]))) === @SMatrix [1 4; 2 5; 3 6]
@test @inferred(vcat(@SMatrix([1;2;3]), @SMatrix([4;5;6]))) === @SMatrix([1;2;3;4;5;6])
@test @inferred(hcat(@SMatrix([1;2;3]), @SMatrix([4;5;6]))) === @SMatrix [1 4; 2 5; 3 6]
@test @inferred(vcat(SVector(1),SVector(2),SVector(3),SVector(4))) === SVector(1,2,3,4)
@test @inferred(hcat(SVector(1),SVector(2),SVector(3),SVector(4))) === SMatrix{1,4}(1,2,3,4)
vcat(SVector(1.0f0), SVector(1.0)) === SVector(1.0, 1.0)
hcat(SVector(1.0f0), SVector(1.0)) === SMatrix{1,2}(1.0, 1.0)
# issue #388
let x = SVector(1, 2, 3)
# current limit: 34 arguments
hcat(
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x)
allocs = @allocated hcat(
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x)
@test allocs == 0
vcat(
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x)
allocs = @allocated vcat(
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,
x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x)
@test allocs == 0
end
# issue #561
let A = Diagonal(SVector(1, 2)), B = @SMatrix [3 4; 5 6]
@test @inferred(hcat(A, B)) === SMatrix{2, 4}([Matrix(A) Matrix(B)])
end
let A = Transpose(@SMatrix [1 2; 3 4]), B = Adjoint(@SMatrix [5 6; 7 8])
@test @inferred(hcat(A, B)) === SMatrix{2, 4}([Matrix(A) Matrix(B)])
end
let A = Diagonal(SVector(1, 2)), B = @SMatrix [3 4; 5 6]
@test @inferred(vcat(A, B)) === SMatrix{4, 2}([Matrix(A); Matrix(B)])
end
let A = Transpose(@SMatrix [1 2; 3 4]), B = Adjoint(@SMatrix [5 6; 7 8])
@test @inferred(vcat(A, B)) === SMatrix{4, 2}([Matrix(A); Matrix(B)])
end
# hcat/vcat + mixtures of Number and SVector / SMatrix
@test @inferred(vcat(SA[1,2,3], 4, 5, 6)) === SVector{6}((1,2,3,4,5,6))
@test @inferred(vcat(0, SA[1,2,3])) === SVector{4}((0,1,2,3))
@test @inferred(hcat(SMatrix{1,3}((1,2,3)), 4, 5, 6)) === SMatrix{1,6}((1,2,3,4,5,6))
@test @inferred(hcat(0, SMatrix{1,3}((1,2,3)))) === SMatrix{1,4}((0,1,2,3))
@test @inferred(vcat(MVector((1,2,3)), 4, 5, 6))::MVector == [1,2,3,4,5,6]
@test @inferred(vcat(SA[1,2,3])) === SA[1,2,3]
@test @inferred(vcat(SA[1 2 3])) === SA[1 2 3]
@test @inferred(hcat(SA[1,2,3])) === SMatrix{3,1}(1,2,3)
@test @inferred(hcat(SA[1 2 3])) === SA[1 2 3]
end
@testset "Base.rest" begin
x = SA[1, 2, 3]
@test Base.rest(x) == x
a, b... = x
@test b == SA[2, 3]
x = SA[1 2; 3 4]
@test Base.rest(x) == vec(x)
a, b... = x
@test b == SA[3, 2, 4]
a, b... = SA[1]
@test b == []
@test b isa SVector{0}
for (Vec, Mat) in [(MVector, MMatrix), (SizedVector, SizedMatrix)]
x = Vec(1, 2, 3)
@test Base.rest(x) == x
@test pointer(Base.rest(x)) != pointer(x)
a, b... = x
@test b == Vec(2, 3)
x = Mat{2,2}(1, 2, 3, 4)
@test Base.rest(x) == vec(x)
@test pointer(Base.rest(x)) != pointer(x)
a, b... = x
@test b == Vec(2, 3, 4)
a, b... = Vec(1)
@test b == []
@test b isa Vec{0}
end
end
@testset "zeros/ones/fill" begin
for ax in ((SOneTo(2),), (SOneTo(2),SOneTo(3)))
@test @inferred(fill(:abc, ax...)) === @inferred(fill(:abc, ax))
@test fill(:abc, ax) == fill(:abc, length.(ax)) == fill(:abc, Base.OneTo.(length.(ax)))
for fz in (zeros, ones)
@test @inferred(fz(Float32, ax...)) === @inferred(fz(Float32, ax))
@test fz(Float32, ax) == fz(Float32, length.(ax)) == fz(Float32, Base.OneTo.(length.(ax)))
end
end
end