-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathintegration.jl
132 lines (118 loc) · 4.1 KB
/
integration.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
using TaylorDiff: TaylorDiff, TaylorScalar, make_seed, flatten, get_coefficient,
set_coefficient, append_coefficient
using TaylorSeries, TaylorIntegration
using ODEProblemLibrary, OrdinaryDiffEq, BenchmarkTools, Symbolics
SymbolicUtils.ENABLE_HASHCONSING[] = true
# There are two ways to compute the Taylor coefficients of a ODE solution
# 1. Using naive repeated differentiation
# 2. First simplify the expansion using Symbolics and then evaluate the expression
"""
# The first method
For ODE u' = f(u, p, t) and initial condition (u0, t0), computes Taylor expansion of the solution `u` up to order `P` using repeated differentiation.
"""
function jetcoeffs(f::ODEFunction{iip}, u0, p, t0, ::Val{P}) where {P, iip}
t = TaylorScalar{P}(t0, one(t0))
u = make_seed(u0, zero(u0), Val(P))
fu = copy(u)
for index in 1:P
if iip
f(fu, u, p, t)
else
fu = f(u, p, t)
end
d = get_coefficient(fu, index - 1) / index
u = set_coefficient(u, index, d)
end
u
end
function scalar_test()
P = 6
prob = prob_ode_linear
t0 = prob.tspan[1]
# TaylorIntegration test
ts = t0 + Taylor1(typeof(t0), P)
u_ts = Taylor1(prob.u0, P)
@btime TaylorIntegration.jetcoeffs!($prob.f, $ts, $u_ts, $prob.p)
# TaylorDiff test
@btime jetcoeffs($prob.f, $prob.u0, $prob.p, $t0, Val($P))
u_td = jetcoeffs(prob.f, prob.u0, prob.p, t0, Val(P))
@assert u_ts.coeffs ≈ collect(flatten(u_td))
end
function array_test()
P = 6
prob = prob_ode_lotkavolterra
t0 = prob.tspan[1]
# TaylorIntegration test
ts = t0 + Taylor1(typeof(t0), P)
u_ts = [Taylor1(x, P) for x in prob.u0]
du = similar(u_ts)
uaux = similar(u_ts)
@btime TaylorIntegration.jetcoeffs!($prob.f, $ts, $u_ts, $du, $uaux, $prob.p)
# TaylorDiff test
@btime jetcoeffs($prob.f, $prob.u0, $prob.p, $t0, Val($P))
u_td = jetcoeffs(prob.f, prob.u0, prob.p, t0, Val(P))
for i in eachindex(u_ts)
@assert u_ts[i].coeffs ≈ collect(flatten(u_td[i]))
end
end
"""
# The second method
For ODE u' = f(u, p, t) and initial condition (u0, t0), symbolically computes Taylor expansion of the solution `u` up to order `P`, and then builds a function to evaluate the expression.
"""
function build_jetcoeffs(f::ODEFunction{iip}, p, ::Val{P}, length = nothing) where {P, iip}
@variables t0::Real
u0 = isnothing(length) ? Symbolics.variable(:u0) : Symbolics.variables(:u0, 1:length)
if iip
@assert length isa Integer
f0 = similar(u0)
f(f0, u0, p, t0)
else
f0 = f(u0, p, t0)
end
u = TaylorDiff.make_seed(u0, f0, Val(1))
for index in 2:P
t = TaylorScalar{index - 1}(t0, one(t0))
if iip
fu = similar(u)
f(fu, u, p, t)
else
fu = f(u, p, t)
end
d = get_coefficient(fu, index - 1) / index
u = append_coefficient(u, d)
end
u_term = make_term.(u)
build_function(u_term, u0, t0; expression = Val(false), cse = true)
end
function make_term(a)
term(TaylorScalar, Symbolics.unwrap(a.value), map(Symbolics.unwrap, a.partials))
end
function simplify_scalar_test()
P = 6
prob = prob_ode_linear
t0 = prob.tspan[1]
@btime jetcoeffs($prob.f, $prob.u0, $prob.p, $t0, Val($P))
fast_jetcoeffs = build_jetcoeffs(prob.f, prob.p, Val(P))
@btime $fast_jetcoeffs($prob.u0, $t0)
end
function simplify_array_test()
P = 6
prob = prob_ode_lotkavolterra
t0 = prob.tspan[1]
@btime jetcoeffs($prob.f, $prob.u0, $prob.p, $t0, Val($P))
fast_oop, fast_iip = build_jetcoeffs(prob.f, prob.p, Val(P), length(prob.u0))
@btime $fast_oop($prob.u0, $t0)
end
P = 6
prob = prob_ode_lotkavolterra
t0 = prob.tspan[1]
@btime jetcoeffs($prob.f, $prob.u0, $prob.p, $t0, Val($P))
fast_oop, fast_iip = build_jetcoeffs(prob.f, prob.p, Val(10), length(prob.u0));
@btime $fast_oop($prob.u0, $t0)
@generated function evaluate_polynomial(t::TaylorScalar{T, P}, z) where {T, P}
ex = :(v[$(P + 1)])
for i in P:-1:1
ex = :(v[$i] + z * $ex)
end
return :($(Expr(:meta, :inline)); v = flatten(t); $ex)
end