Skip to content

Files

Latest commit

4aae924 · Aug 5, 2024

History

History

s0064_minimum_path_sum

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Aug 5, 2024

64. Minimum Path Sum

Medium

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]

Output: 7

Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]

Output: 12

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 100

Solution

defmodule Solution do
    @spec min_path_sum(grid :: [[integer]]) :: integer
    def min_path_sum(grid) do
        traverse(grid, [0 | List.duplicate(20000, 199)])
    end

    defp traverse([], prev_row), do: Enum.at(prev_row, -1)
    defp traverse([[first | row] | rows], [prev_row_head | prev_row]) do
        prev_row = traverse_row(row, prev_row, [first + prev_row_head])
        traverse(rows, prev_row)
    end

    defp traverse_row([], _prev_row, acc), do: Enum.reverse(acc)
    defp traverse_row([head | tail], [top | prev_row], [prev | _rest] = acc) do
        traverse_row(tail, prev_row, [head + min(prev, top) | acc])
    end
end