-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathperceptronalgo.tex
40 lines (34 loc) · 1.47 KB
/
perceptronalgo.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{braket}
\usepackage{amsmath, amsfonts, amssymb}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\algdef{SE}[DOWHILE]{Do}{doWhile}{\algorithmicdo}[1]{\algorithmicwhile\ #1}%
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\makeatletter
\renewcommand{\fnum@algorithm}{\fname@algorithm}
\makeatother
\begin{document}
\pagestyle{empty}
% #Classical perceptron algorithm
\begin{algorithm}[ht]
\caption{Classical online perceptron training}
\begin{algorithmic}[1]
\Require A dataset $\mathcal{D}=\{ (x^{(1)},y^{(1)}), (x^{(2)}, y^{(2)} ) ,\ldots, ( x^{(n)},y^{(n)})\} \in (\mathbb{R}^{m} \times\{0,1\})^{n}$
\Ensure A vector of weights $w$ such that $y^{(j)}(w^\top x^{(i)}) > 0$ for all $j \in \{1, \dots, n\}$
\State Initialize ${w}:={0} \in \mathbb{R}^{m+1}$
\State $\mathrm{continue}=0$
\Do
\For {every data point $\left(x^{(j)}, y^{(j)}\right) \in \mathcal{D}$}
\State Compute the prediction $\hat{y}^{[i]}:=\sigma\left(\mathbf{x}^{[i]T} {w}_{i}+b\right)$
\State Compute the $\mathrm{error}:=\left(\hat{y}^{(i)}-{y}^{(i)}\right)$
\State $\mathrm{continue} = \mathrm{continue} + |\mathrm{error}|$
\State Update the weights ${w}_{i}^{'}:={w}_{i}+\Delta{w}$
\EndFor
\doWhile{$\mathrm{continue}!=0$}
\end{algorithmic}
\end{algorithm}
\end{document}