-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathqem.tex
44 lines (37 loc) · 2.53 KB
/
qem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{algorithm}
\usepackage{algpseudocode}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\begin{document}
\pagestyle{empty}
\begin{algorithm}[ht]
\caption{QEM for GMM }
\begin{algorithmic}[1]
\Require Quantum access to a GMM model, precision parameters $\delta_\theta, \delta_\mu,$ and threshold $\epsilon_\tau$.
\Ensure A GMM $\overline{\gamma}^t$ that maximizes locally the likelihood $\ell(\gamma;V)$, up to tolerance $\epsilon_\tau$.
\vspace{10pt}
\State Use a heuristic (like lemma $q$-means++) to determine the initial guess $\gamma^0=(\theta^0, \vec \mu^0, \vec \Sigma^0)$, and build quantum access those parameters.
\State Use lemma \ref{lemma: absolute error logdet} to estimate the log determinant of the matrices $\{ \Sigma_j^0 \}_{j=1}^k$.
\State t=0
\Repeat
\State \textbf{Step 1:} Get an estimate of $\theta^{t+1}$ using lemma \ref{lemma:theta} such that
$\norm{\overline{\theta}^{t+1} - \theta^{t+1}} \leq\delta_\theta. $ % to create the state:
% $$\sum_{j \in [k]}\sqrt{\theta_j^{t+1}}\ket{j}\ket{G_j}$$
% where $G_j$ is garbage. \note{I meant the garbage appears inside lemma \ref{lemma:theta}, can we use just the statement of this lemma?}
\State \textbf{Step 2:} Get an estimate $\{ \overline{\mu_j}^{t+1} \}_{j=1}^k$ by using lemma \ref{lemma:centroids} to estimate each $\norm{\mu_j^{t+1}} $ and $\ket{\mu_j^{t+1}}$ such that
$\norm{\mu_j^{t+1} - \overline{\mu_j}^{t+1}} \leq \delta_\mu $.
\State \textbf{Step 3:} Get an estimate $\{ \overline{\Sigma_j}^{t+1} \}_{j=1}^k$ by using lemma \ref{lemma:sigma} to estimate $\norm{\Sigma_j^{t+1}}_F$ and $\ket{\Sigma_j^{t+1}}$ such that
$ \norm{\Sigma_j^{t+1} - \overline{\Sigma_j}^{t+1} } \leq \delta_{\mu} \sqrt{\eta} $.
\State \textbf{Step 4:} Estimate $\mathbb{E}[ \overline{p(v_i;\gamma^{t+1})}]$ up to error $\epsilon_\tau/2$ using theorem \ref{lemma:likelihoodestimation}.
\State \textbf{Step 5:} Build quantum access to $\gamma^{t+1}$, and use lemma \ref{lemma: absolute error logdet} to estimate the determinants $\{ \overline{\log det(\Sigma_j^{t+1})} \}_{j=0}^k$.
\State $t=t+1$
%\STATE .
\Until
$$| \mathbb{E}[ \overline{p(v_i;\gamma^{t})}] - \mathbb{E}[\overline{p(v_i;\gamma^{t-1})}] | < \epsilon_\tau$$
\State Return $\overline{\gamma}^{t}=(\overline{\theta}^t, \overline{\vec \mu}^t, \overline{\vec \Sigma}^t )$
\end{algorithmic}
\end{algorithm}
\end{document}