forked from plotly/plotly.py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_cumulative.py
208 lines (182 loc) · 7.21 KB
/
_cumulative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from plotly.basedatatypes import BaseTraceHierarchyType
import copy
class Cumulative(BaseTraceHierarchyType):
# currentbin
# ----------
@property
def currentbin(self):
"""
Only applies if cumulative is enabled. Sets whether the current
bin is included, excluded, or has half of its value included in
the current cumulative value. "include" is the default for
compatibility with various other tools, however it introduces a
half-bin bias to the results. "exclude" makes the opposite
half-bin bias, and "half" removes it.
The 'currentbin' property is an enumeration that may be specified as:
- One of the following enumeration values:
['include', 'exclude', 'half']
Returns
-------
Any
"""
return self['currentbin']
@currentbin.setter
def currentbin(self, val):
self['currentbin'] = val
# direction
# ---------
@property
def direction(self):
"""
Only applies if cumulative is enabled. If "increasing"
(default) we sum all prior bins, so the result increases from
left to right. If "decreasing" we sum later bins so the result
decreases from left to right.
The 'direction' property is an enumeration that may be specified as:
- One of the following enumeration values:
['increasing', 'decreasing']
Returns
-------
Any
"""
return self['direction']
@direction.setter
def direction(self, val):
self['direction'] = val
# enabled
# -------
@property
def enabled(self):
"""
If true, display the cumulative distribution by summing the
binned values. Use the `direction` and `centralbin` attributes
to tune the accumulation method. Note: in this mode, the
"density" `histnorm` settings behave the same as their
equivalents without "density": "" and "density" both rise to
the number of data points, and "probability" and *probability
density* both rise to the number of sample points.
The 'enabled' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self['enabled']
@enabled.setter
def enabled(self, val):
self['enabled'] = val
# property parent name
# --------------------
@property
def _parent_path_str(self):
return 'histogram'
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
currentbin
Only applies if cumulative is enabled. Sets whether the
current bin is included, excluded, or has half of its
value included in the current cumulative value.
"include" is the default for compatibility with various
other tools, however it introduces a half-bin bias to
the results. "exclude" makes the opposite half-bin
bias, and "half" removes it.
direction
Only applies if cumulative is enabled. If "increasing"
(default) we sum all prior bins, so the result
increases from left to right. If "decreasing" we sum
later bins so the result decreases from left to right.
enabled
If true, display the cumulative distribution by summing
the binned values. Use the `direction` and `centralbin`
attributes to tune the accumulation method. Note: in
this mode, the "density" `histnorm` settings behave the
same as their equivalents without "density": "" and
"density" both rise to the number of data points, and
"probability" and *probability density* both rise to
the number of sample points.
"""
def __init__(
self,
arg=None,
currentbin=None,
direction=None,
enabled=None,
**kwargs
):
"""
Construct a new Cumulative object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of plotly.graph_objs.histogram.Cumulative
currentbin
Only applies if cumulative is enabled. Sets whether the
current bin is included, excluded, or has half of its
value included in the current cumulative value.
"include" is the default for compatibility with various
other tools, however it introduces a half-bin bias to
the results. "exclude" makes the opposite half-bin
bias, and "half" removes it.
direction
Only applies if cumulative is enabled. If "increasing"
(default) we sum all prior bins, so the result
increases from left to right. If "decreasing" we sum
later bins so the result decreases from left to right.
enabled
If true, display the cumulative distribution by summing
the binned values. Use the `direction` and `centralbin`
attributes to tune the accumulation method. Note: in
this mode, the "density" `histnorm` settings behave the
same as their equivalents without "density": "" and
"density" both rise to the number of data points, and
"probability" and *probability density* both rise to
the number of sample points.
Returns
-------
Cumulative
"""
super(Cumulative, self).__init__('cumulative')
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.histogram.Cumulative
constructor must be a dict or
an instance of plotly.graph_objs.histogram.Cumulative"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop('skip_invalid', False)
# Import validators
# -----------------
from plotly.validators.histogram import (cumulative as v_cumulative)
# Initialize validators
# ---------------------
self._validators['currentbin'] = v_cumulative.CurrentbinValidator()
self._validators['direction'] = v_cumulative.DirectionValidator()
self._validators['enabled'] = v_cumulative.EnabledValidator()
# Populate data dict with properties
# ----------------------------------
_v = arg.pop('currentbin', None)
self['currentbin'] = currentbin if currentbin is not None else _v
_v = arg.pop('direction', None)
self['direction'] = direction if direction is not None else _v
_v = arg.pop('enabled', None)
self['enabled'] = enabled if enabled is not None else _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False