Skip to content

Commit f093837

Browse files
JNardoniPanquesito7
andauthoredJan 24, 2023
feat: add Boruvkas Algorithm (#1984)
* Boruvkas Algorithm Implementation Implemented Boruvkas Algorithm under graphs as a means for finding the minimums spanning tree * Boruvkas Algorithm Implementation Implemented Boruvkas algorithm, a greedy algorithm to find a graphs minimum spanning tree. * Update climits limits.h to climits Co-authored-by: David Leal <halfpacho@gmail.com> * Fixes for maintainability Made changes as recommended by Panquesito7 for maintainability and security * Fixed boruvkas main Made suggested changes Co-authored-by: David Leal <halfpacho@gmail.com> * Suggested changes for Boruvkas Changed from graph to greedy algorithm, removed the extra main(), general fixes * Update Boruvkas readability, CI Workflow General readability changes, change push_back to implace_back * Update Boruvkas memory allocation Added pre-allocation of memory for the parent vector of Boruvkas * Fixed file name, added namespace Fixed file name, added Boruvkas namespace, made suggested changes * Update boruvkas spacing Fixed spacing hopefully * Update boruvkas spacing Fixing weird tabs * Update Boruvkas tabs spacings Finally done with spacing i think * Boruvkas - Finished spacing Triplle checked tabs/spaces * chore: apply suggestions from code review * fix: CI issues (hopefully) * fix: last fix Co-authored-by: David Leal <halfpacho@gmail.com>
1 parent 249ba88 commit f093837

File tree

1 file changed

+222
-0
lines changed

1 file changed

+222
-0
lines changed
 
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,222 @@
1+
/**
2+
* @author [Jason Nardoni](https://github.com/JNardoni)
3+
* @file
4+
*
5+
* @brief
6+
* [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to find the Minimum Spanning Tree
7+
*
8+
*
9+
* @details
10+
* Boruvka's algorithm is a greepy algorithm to find the MST by starting with small trees, and combining
11+
* them to build bigger ones.
12+
* 1. Creates a group for every vertex.
13+
* 2. looks through each edge of every vertex for the smallest weight. Keeps track
14+
* of the smallest edge for each of the current groups.
15+
* 3. Combine each group with the group it shares its smallest edge, adding the smallest
16+
* edge to the MST.
17+
* 4. Repeat step 2-3 until all vertices are combined into a single group.
18+
*
19+
* It assumes that the graph is connected. Non-connected edges can be represented using 0 or INT_MAX
20+
*
21+
*/
22+
23+
#include <iostream> /// for IO operations
24+
#include <vector> /// for std::vector
25+
#include <cassert> /// for assert
26+
#include <climits> /// for INT_MAX
27+
28+
/**
29+
* @namespace greedy_algorithms
30+
* @brief Greedy Algorithms
31+
*/
32+
namespace greedy_algorithms {
33+
/**
34+
* @namespace boruvkas_minimum_spanning_tree
35+
* @brief Functions for the [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation
36+
*/
37+
namespace boruvkas_minimum_spanning_tree {
38+
/**
39+
* @brief Recursively returns the vertex's parent at the root of the tree
40+
* @param parent the array that will be checked
41+
* @param v vertex to find parent of
42+
* @returns the parent of the vertex
43+
*/
44+
int findParent(std::vector<std::pair<int,int>> parent, const int v) {
45+
if (parent[v].first != v) {
46+
parent[v].first = findParent(parent, parent[v].first);
47+
}
48+
49+
return parent[v].first;
50+
}
51+
52+
/**
53+
* @brief the implementation of boruvka's algorithm
54+
* @param adj a graph adjancency matrix stored as 2d vectors.
55+
* @returns the MST as 2d vectors
56+
*/
57+
std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
58+
59+
size_t size = adj.size();
60+
size_t total_groups = size;
61+
62+
if (size <= 1) {
63+
return adj;
64+
}
65+
66+
// Stores the current Minimum Spanning Tree. As groups are combined, they are added to the MST
67+
std::vector<std::vector<int>> MST(size, std::vector<int>(size, INT_MAX));
68+
for (int i = 0; i < size; i++) {
69+
MST[i][i] = 0;
70+
}
71+
72+
// Step 1: Create a group for each vertex
73+
74+
// Stores the parent of the vertex and its current depth, both initialized to 0
75+
std::vector<std::pair<int, int>> parent(size, std::make_pair(0, 0));
76+
77+
for (int i = 0; i < size; i++) {
78+
parent[i].first = i; // Sets parent of each vertex to itself, depth remains 0
79+
}
80+
81+
// Repeat until all are in a single group
82+
while (total_groups > 1) {
83+
84+
std::vector<std::pair<int,int>> smallest_edge(size, std::make_pair(-1, -1)); //Pairing: start node, end node
85+
86+
// Step 2: Look throught each vertex for its smallest edge, only using the right half of the adj matrix
87+
for (int i = 0; i < size; i++) {
88+
for (int j = i+1; j < size; j++) {
89+
90+
if (adj[i][j] == INT_MAX || adj[i][j] == 0) { // No connection
91+
continue;
92+
}
93+
94+
// Finds the parents of the start and end points to make sure they arent in the same group
95+
int parentA = findParent(parent, i);
96+
int parentB = findParent(parent, j);
97+
98+
if (parentA != parentB) {
99+
100+
// Grabs the start and end points for the first groups current smallest edge
101+
int start = smallest_edge[parentA].first;
102+
int end = smallest_edge[parentA].second;
103+
104+
// If there is no current smallest edge, or the new edge is smaller, records the new smallest
105+
if (start == -1 || adj [i][j] < adj[start][end]) {
106+
smallest_edge[parentA].first = i;
107+
smallest_edge[parentA].second = j;
108+
}
109+
110+
// Does the same for the second group
111+
start = smallest_edge[parentB].first;
112+
end = smallest_edge[parentB].second;
113+
114+
if (start == -1 || adj[j][i] < adj[start][end]) {
115+
smallest_edge[parentB].first = j;
116+
smallest_edge[parentB].second = i;
117+
}
118+
}
119+
}
120+
}
121+
122+
// Step 3: Combine the groups based off their smallest edge
123+
124+
for (int i = 0; i < size; i++) {
125+
126+
// Makes sure the smallest edge exists
127+
if (smallest_edge[i].first != -1) {
128+
129+
// Start and end points for the groups smallest edge
130+
int start = smallest_edge[i].first;
131+
int end = smallest_edge[i].second;
132+
133+
// Parents of the two groups - A is always itself
134+
int parentA = i;
135+
int parentB = findParent(parent, end);
136+
137+
// Makes sure the two nodes dont share the same parent. Would happen if the two groups have been
138+
//merged previously through a common shortest edge
139+
if (parentA == parentB) {
140+
continue;
141+
}
142+
143+
// Tries to balance the trees as much as possible as they are merged. The parent of the shallower
144+
//tree will be pointed to the parent of the deeper tree.
145+
if (parent[parentA].second < parent[parentB].second) {
146+
parent[parentB].first = parentA; //New parent
147+
parent[parentB].second++; //Increase depth
148+
}
149+
else {
150+
parent[parentA].first = parentB;
151+
parent[parentA].second++;
152+
}
153+
// Add the connection to the MST, using both halves of the adj matrix
154+
MST[start][end] = adj[start][end];
155+
MST[end][start] = adj[end][start];
156+
total_groups--; // one fewer group
157+
}
158+
}
159+
}
160+
return MST;
161+
}
162+
163+
/**
164+
* @brief counts the sum of edges in the given tree
165+
* @param adj 2D vector adjacency matrix
166+
* @returns the int size of the tree
167+
*/
168+
int test_findGraphSum(std::vector<std::vector<int>> adj) {
169+
170+
size_t size = adj.size();
171+
int sum = 0;
172+
173+
//Moves through one side of the adj matrix, counting the sums of each edge
174+
for (int i = 0; i < size; i++) {
175+
for (int j = i + 1; j < size; j++) {
176+
if (adj[i][j] < INT_MAX) {
177+
sum += adj[i][j];
178+
}
179+
}
180+
}
181+
return sum;
182+
}
183+
} // namespace boruvkas_minimum_spanning_tree
184+
} // namespace greedy_algorithms
185+
186+
/**
187+
* @brief Self-test implementations
188+
* @returns void
189+
*/
190+
static void tests() {
191+
std::cout << "Starting tests...\n\n";
192+
std::vector<std::vector<int>> graph = {
193+
{0, 5, INT_MAX, 3, INT_MAX} ,
194+
{5, 0, 2, INT_MAX, 5} ,
195+
{INT_MAX, 2, 0, INT_MAX, 3} ,
196+
{3, INT_MAX, INT_MAX, 0, INT_MAX} ,
197+
{INT_MAX, 5, 3, INT_MAX, 0} ,
198+
};
199+
std::vector<std::vector<int>> MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
200+
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 13);
201+
std::cout << "1st test passed!" << std::endl;
202+
203+
graph = {
204+
{ 0, 2, 0, 6, 0 },
205+
{ 2, 0, 3, 8, 5 },
206+
{ 0, 3, 0, 0, 7 },
207+
{ 6, 8, 0, 0, 9 },
208+
{ 0, 5, 7, 9, 0 }
209+
};
210+
MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
211+
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 16);
212+
std::cout << "2nd test passed!" << std::endl;
213+
}
214+
215+
/**
216+
* @brief Main function
217+
* @returns 0 on exit
218+
*/
219+
int main() {
220+
tests(); // run self-test implementations
221+
return 0;
222+
}

0 commit comments

Comments
 (0)
Failed to load comments.