-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy pathreader.py
90 lines (73 loc) · 2.69 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from __future__ import division
# Copyright 2017 - 2018 Baidu Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from past.utils import old_div
import os
import random
import functools
import numpy as np
import paddle
from PIL import Image, ImageEnhance
random.seed(0)
DATA_DIM = 224
THREAD = 1
BUF_SIZE = 102400
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img
def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = old_div((width - size), 2)
h_start = old_div((height - size), 2)
else:
w_start = random.randint(0, width - size)
h_start = random.randint(0, height - size)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img
def process_image(sample):
img_path = sample[0]
img = Image.open(img_path)
if img.size[0] != img.size[1] or img.size[0] != DATA_DIM:
img = resize_short(img, target_size=256)
img = crop_image(img, target_size=DATA_DIM, center=True)
if img.mode != 'RGB':
img = img.convert('RGB')
img = old_div(np.array(img).astype('float32').transpose((2, 0, 1)), 255)
img -= img_mean
img /= img_std
return [img], img_path
def _reader_creator(file_list,
data_path,
shuffle=False):
def reader():
with open(file_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(lines)
for line in lines:
img_path = os.path.join(data_path, line)
yield [img_path]
mapper = functools.partial(process_image)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
def test(file_list, data_path):
return _reader_creator(file_list, data_path, shuffle=False)