forked from refnx/refnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpi_parallelisation.py
138 lines (110 loc) · 4.13 KB
/
mpi_parallelisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/bin/bash
"""
Using refnx in a highly parallelised environment using mpi.
You'll need to install:
- refnx
- numpy
- cython
- schwimmbad
- mpi4py
Usage
-----
mpiexec -n 4 python mpi_parallelisation.py
"""
# Start off by importing necessary packages
import sys
import os.path
import refnx
from schwimmbad import MPIPool
from refnx.reflect import SLD, Slab, ReflectModel
from refnx.dataset import ReflectDataset
from refnx.analysis import (Objective, CurveFitter, Transform, GlobalObjective)
def setup():
# load the data.
DATASET_NAME = os.path.join(refnx.__path__[0],
'analysis',
'test',
'c_PLP0011859_q.txt')
# load the data
data = ReflectDataset(DATASET_NAME)
# the materials we're using
si = SLD(2.07, name='Si')
sio2 = SLD(3.47, name='SiO2')
film = SLD(2, name='film')
d2o = SLD(6.36, name='d2o')
structure = si | sio2(30, 3) | film(250, 3) | d2o(0, 3)
structure[1].thick.setp(vary=True, bounds=(15., 50.))
structure[1].rough.setp(vary=True, bounds=(1., 6.))
structure[2].thick.setp(vary=True, bounds=(200, 300))
structure[2].sld.real.setp(vary=True, bounds=(0.1, 3))
structure[2].rough.setp(vary=True, bounds=(1, 6))
model = ReflectModel(structure, bkg=9e-6, scale=1.)
model.bkg.setp(vary=True, bounds=(1e-8, 1e-5))
model.scale.setp(vary=True, bounds=(0.9, 1.1))
model.threads = 1
# fit on a logR scale, but use weighting
objective = Objective(model, data, transform=Transform('logY'),
use_weights=True)
return objective
def structure_plot(obj, samples=0):
# plot sld profiles
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
if isinstance(obj, GlobalObjective):
if samples > 0:
savedparams = np.array(obj.parameters)
for pvec in obj.parameters.pgen(ngen=samples):
obj.setp(pvec)
for o in obj.objectives:
if hasattr(o.model, 'structure'):
ax.plot(*o.model.structure.sld_profile(),
color="k", alpha=0.01)
# put back saved_params
obj.setp(savedparams)
for o in obj.objectives:
if hasattr(o.model, 'structure'):
ax.plot(*o.model.structure.sld_profile(), zorder=20)
ax.set_ylabel('SLD / $10^{-6}\\AA^{-2}$')
ax.set_xlabel("z / $\\AA$")
elif isinstance(obj, Objective) and hasattr(obj.model, 'structure'):
fig, ax = obj.model.structure.plot(samples=samples)
fig.savefig('steps_sld.png', dpi=1000)
if __name__ == "__main__":
with MPIPool() as pool:
if not pool.is_master():
pool.wait()
sys.exit(0)
# buffering so the program doesn't try to write to the file
# constantly
with open('steps.chain', 'w', buffering=500000) as f:
objective = setup()
# Create the fitter and fit
fitter = CurveFitter(objective, nwalkers=300)
fitter.initialise('prior')
fitter.fit('differential_evolution')
# thin by 10 so we have a smaller filesize
fitter.sample(100, pool=pool.map, f=f, verbose=False, nthin=10);
f.flush()
try:
# create graphs of reflectivity and SLD profiles
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('agg')
fig, ax = objective.plot(samples=1000)
ax.set_ylabel('R')
ax.set_xlabel("Q / $\\AA$")
fig.savefig('steps.png', dpi=1000)
structure_plot(objective, samples=1000)
# corner plot
fig = objective.corner()
fig.savefig('steps_corner.png')
# plot the Autocorrelation function of the chain
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(fitter.acf())
ax.set_ylabel('autocorrelation')
ax.set_xlabel('step')
fig.savefig('steps-autocorrelation.png')
except ImportError:
pass