forked from refnx/refnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_creflect.pyx
697 lines (622 loc) · 20.9 KB
/
_creflect.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# cython: language_level=3, boundscheck=False
"""
*Calculates the specular (Neutron or X-ray) reflectivity from a stratified
series of layers.
The refnx code is distributed under the following license:
Copyright (c) 2015 A. R. J. Nelson, Australian Nuclear Science and Technology Organisation
Permission to use and redistribute the source code or binary forms of this
software and its documentation, with or without modification is hereby
granted provided that the above notice of copyright, these terms of use,
and the disclaimer of warranty below appear in the source code and
documentation, and that none of the names of above institutions or
authors appear in advertising or endorsement of works derived from this
software without specific prior written permission from all parties.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THIS SOFTWARE.
"""
from multiprocessing import cpu_count
from cpython.mem cimport PyMem_Malloc, PyMem_Free
import numpy as np
cimport numpy as np
cimport cython
np.import_array()
cdef extern from "refcaller.h" nogil:
void abeles_wrapper(
int numcoefs,
const double *coefP,
int npoints,
double *yP,
const double *xP
)
void abeles_wrapper_MT(
unsigned int batch,
int numcoefs,
const double *coefP,
int npoints,
double *yP,
const double *xP,
int threads
)
void parratt_wrapper(
int numcoefs,
const double *coefP,
int npoints,
double *yP,
const double *xP
)
void parratt_wrapper_MT(
unsigned int batch,
int numcoefs,
const double *coefP,
int npoints,
double *yP,
const double *xP,
int threads
)
void pnr(
int layers,
const double *d,
const double *sigma,
const double *rho,
const double *irho,
const double *rhoM,
const double *thetaM,
double H,
double Aguide,
int points,
const double *xP,
double *Ra,
double *Rb,
double *Rc,
double *Rd,
)
void pnr_MT(
int workers,
int layers,
const double *d,
const double *sigma,
const double *rho,
const double *irho,
const double *rhoM,
const double *thetaM,
double H,
double Aguide,
int points,
const double *xP,
double *Ra,
double *Rb,
double *Rc,
double *Rd,
)
ctypedef np.float64_t float64_t
# figure out CPU count
cdef int NCPU = cpu_count()
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray abeles(
np.ndarray x,
double[:, :] w,
double scale=1.0,
double bkg=0.,
int threads=-1
):
"""Abeles matrix formalism for calculating reflectivity from a stratified
medium.
Parameters
----------
q: array_like
the q values required for the calculation.
Q = 4 * Pi / lambda * sin(omega).
Units = Angstrom**-1
layers: np.ndarray
coefficients required for the calculation, has shape (2 + N, 4),
where N is the number of layers
layers[0, 1] - SLD of fronting (/1e-6 Angstrom**-2)
layers[0, 2] - iSLD of fronting (/1e-6 Angstrom**-2)
layers[N, 0] - thickness of layer N
layers[N, 1] - SLD of layer N (/1e-6 Angstrom**-2)
layers[N, 2] - iSLD of layer N (/1e-6 Angstrom**-2)
layers[N, 3] - roughness between layer N-1/N
layers[-1, 1] - SLD of backing (/1e-6 Angstrom**-2)
layers[-1, 2] - iSLD of backing (/1e-6 Angstrom**-2)
layers[-1, 3] - roughness between backing and last layer
scale: float
Multiply all reflectivities by this value.
bkg: float
Linear background to be added to all reflectivities
threads: int, optional
How many threads you would like to use in the reflectivity calculation.
If `threads == -1` then the calculation is automatically spread over
`multiprocessing.cpu_count()` threads.
Returns
-------
Reflectivity: np.ndarray
Calculated reflectivity values for each q value.
"""
if w.shape[1] != 4 or w.shape[0] < 2:
raise ValueError("Layer parameters for _creflect must be an array of"
" shape (>2, 4)")
if x.dtype != np.float64:
raise ValueError("Q values for _creflect must be np.float64")
cdef:
int nlayers = w.shape[0] - 2
int npoints = x.size
np.ndarray y = np.empty_like(x, np.float64)
double *x_data
double *y_data
if not x.flags['C_CONTIGUOUS']:
x = np.ascontiguousarray(x, dtype=np.float64)
x_data = <float64_t *>np.PyArray_DATA(x)
y_data = <float64_t *>np.PyArray_DATA(y)
coefs = <double*> PyMem_Malloc((4*nlayers + 8) * sizeof(double))
if not coefs:
raise MemoryError()
cdef double [:] coefs_view = <double[:4*nlayers + 8]>coefs
try:
with nogil:
if threads == -1:
threads = NCPU
elif threads == 0:
threads = 1
coefs_view[0] = nlayers
coefs_view[1] = scale
coefs_view[2:4] = w[0, 1: 3]
coefs_view[4: 6] = w[-1, 1: 3]
coefs_view[6] = bkg
coefs_view[7] = w[-1, 3]
if nlayers:
coefs_view[8::4] = w[1:-1, 0]
coefs_view[9::4] = w[1:-1, 1]
coefs_view[10::4] = w[1:-1, 2]
coefs_view[11::4] = w[1:-1, 3]
if threads > 1:
abeles_wrapper_MT(
1,
4*nlayers + 8,
coefs,
npoints,
y_data,
x_data,
threads
)
else:
abeles_wrapper(
4*nlayers + 8,
coefs,
npoints,
y_data,
x_data
)
finally:
PyMem_Free(coefs)
return y
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray parratt(
np.ndarray x,
double[:, :] w,
double scale=1.0,
double bkg=0.,
int threads=-1
):
"""
Parratt recursion formula for calculating reflectivity from a stratified
medium.
Parameters
----------
q: array_like
the q values required for the calculation.
Q = 4 * Pi / lambda * sin(omega).
Units = Angstrom**-1
layers: np.ndarray
coefficients required for the calculation, has shape (2 + N, 4),
where N is the number of layers
layers[0, 1] - SLD of fronting (/1e-6 Angstrom**-2)
layers[0, 2] - iSLD of fronting (/1e-6 Angstrom**-2)
layers[N, 0] - thickness of layer N
layers[N, 1] - SLD of layer N (/1e-6 Angstrom**-2)
layers[N, 2] - iSLD of layer N (/1e-6 Angstrom**-2)
layers[N, 3] - roughness between layer N-1/N
layers[-1, 1] - SLD of backing (/1e-6 Angstrom**-2)
layers[-1, 2] - iSLD of backing (/1e-6 Angstrom**-2)
layers[-1, 3] - roughness between backing and last layer
scale: float
Multiply all reflectivities by this value.
bkg: float
Linear background to be added to all reflectivities
threads: int, optional
How many threads you would like to use in the reflectivity calculation.
If `threads == -1` then the calculation is automatically spread over
`multiprocessing.cpu_count()` threads.
Returns
-------
Reflectivity: np.ndarray
Calculated reflectivity values for each q value.
"""
if w.shape[1] != 4 or w.shape[0] < 2:
raise ValueError("Layer parameters for _creflect must be an array of"
" shape (>2, 4)")
if x.dtype != np.float64:
raise ValueError("Q values for _creflect must be np.float64")
cdef:
int nlayers = w.shape[0] - 2
int npoints = x.size
np.ndarray y = np.empty_like(x, np.float64)
double *x_data
double *y_data
if not x.flags['C_CONTIGUOUS']:
x = np.ascontiguousarray(x, dtype=np.float64)
x_data = <float64_t *>np.PyArray_DATA(x)
y_data = <float64_t *>np.PyArray_DATA(y)
coefs = <double*> PyMem_Malloc((4*nlayers + 8) * sizeof(double))
if not coefs:
raise MemoryError()
cdef double [:] coefs_view = <double[:4*nlayers + 8]>coefs
try:
with nogil:
if threads == -1:
threads = NCPU
elif threads == 0:
threads = 1
coefs_view[0] = nlayers
coefs_view[1] = scale
coefs_view[2:4] = w[0, 1: 3]
coefs_view[4: 6] = w[-1, 1: 3]
coefs_view[6] = bkg
coefs_view[7] = w[-1, 3]
if nlayers:
coefs_view[8::4] = w[1:-1, 0]
coefs_view[9::4] = w[1:-1, 1]
coefs_view[10::4] = w[1:-1, 2]
coefs_view[11::4] = w[1:-1, 3]
if threads > 1:
parratt_wrapper_MT(
1,
4*nlayers + 8,
coefs,
npoints,
y_data,
x_data,
threads
)
else:
parratt_wrapper(
4*nlayers + 8,
coefs,
npoints,
y_data,
x_data
)
finally:
PyMem_Free(coefs)
return y
@cython.boundscheck(False)
cpdef _contract_by_area(np.ndarray[np.float64_t, ndim=2] slabs, dA=0.5):
newslabs = np.copy(slabs)[::-1]
cdef:
double [:, :] newslabs_view = newslabs
double [:] d = newslabs_view[:, 0]
double [:] rho = newslabs_view[:, 1]
double [:] irho = newslabs_view[:, 2]
double [:] sigma = newslabs[:, 3]
double [:] vfsolv = newslabs[:, 4]
size_t n = np.size(d, 0)
size_t i, newi
double dz, rhoarea, irhoarea, vfsolvarea, rholo, rhohi, irholo, irhohi
double da = float(dA)
with nogil:
i = 1
newi = 1 # skip the substrate
while i < n:
# Get ready for the next layer
# Accumulation of the first row happens in the inner loop
dz = rhoarea = irhoarea = vfsolvarea = 0.
rholo = rhohi = rho[i]
irholo = irhohi = irho[i]
# Accumulate slices into layer
while True:
# Accumulate next slice
dz += d[i]
rhoarea += d[i] * rho[i]
irhoarea += d[i] * irho[i]
vfsolvarea += d[i] * vfsolv[i]
i += 1
# If no more slices or sigma != 0, break immediately
if i == n or sigma[i - 1] != 0.:
break
# If next slice won't fit, break
if rho[i] < rholo:
rholo = rho[i]
if rho[i] > rhohi:
rhohi = rho[i]
if (rhohi - rholo) * (dz + d[i]) > da:
break
if irho[i] < irholo:
irholo = irho[i]
if irho[i] > irhohi:
irhohi = irho[i]
if (irhohi - irholo) * (dz + d[i]) > da:
break
# Save the layer
d[newi] = dz
if i == n:
# printf("contract: adding final sld at %d\n",newi)
# Last layer uses surface values
rho[newi] = rho[n - 1]
irho[newi] = irho[n - 1]
vfsolv[newi] = vfsolv[n - 1]
else:
# Middle layers uses average values
rho[newi] = rhoarea / dz
irho[newi] = irhoarea / dz
sigma[newi] = sigma[i - 1]
vfsolv[newi] = vfsolvarea / dz
# First layer uses substrate values
newi += 1
return newslabs[:newi][::-1]
cpdef np.ndarray abeles_vectorised(
np.ndarray x,
double[:, :, :] w,
scale=None,
bkg=None,
int threads=-1
):
"""
Vectorised Abeles matrix formalism for calculating reflectivity from a
stratified medium.
Parameters
----------
q: array_like
the q values required for the calculation.
Q = 4 * Pi / lambda * sin(omega).
Units = Angstrom**-1
layers: np.ndarray
coefficients required for the calculation, has shape (M, 2 + N, 4).
The calculation is vectorised over the M sets of film parameters, and
N is the number of layers in each film.
layers[:, 0, 1] - SLD of fronting (/1e-6 Angstrom**-2)
layers[:, 0, 2] - iSLD of fronting (/1e-6 Angstrom**-2)
layers[:, N, 0] - thickness of layer N
layers[:, N, 1] - SLD of layer N (/1e-6 Angstrom**-2)
layers[:, N, 2] - iSLD of layer N (/1e-6 Angstrom**-2)
layers[:, N, 3] - roughness between layer N-1/N
layers[:, -1, 1] - SLD of backing (/1e-6 Angstrom**-2)
layers[:, -1, 2] - iSLD of backing (/1e-6 Angstrom**-2)
layers[:, -1, 3] - roughness between backing and last layer
scale: array-like, optional
Multiply all reflectivities by this value.
bkg: array-like, optional
Linear background to be added to all reflectivities
threads: int, optional
How many threads you would like to use in the reflectivity calculation.
If `threads == -1` then the calculation is automatically spread over
`multiprocessing.cpu_count()` threads.
Returns
-------
Reflectivity: np.ndarray
Calculated reflectivity values for each q value.
"""
if w.shape[2] != 4 or w.shape[1] < 2:
raise ValueError(
"Layer parameters for _creflect.abeles_vectorised must be an"
"array of shape (>=1, >2, 4)"
)
if x.dtype != np.float64:
raise ValueError("Q values for _creflect.abeles_vectorised must be np.float64")
if scale is not None:
if not isinstance(scale, np.ndarray) or scale.shape[0] != w.shape[0]:
raise ValueError("scale must be an array of shape (M,)")
else:
scale = np.ones(w.shape[0], dtype=np.float64)
if bkg is not None:
if not isinstance(bkg, np.ndarray) or bkg.shape[0] != w.shape[0]:
raise ValueError("bkg must be an array of shape (M,)")
else:
bkg = np.zeros(w.shape[0])
if threads == -1:
threads = NCPU
elif threads == 0:
threads = 1
cdef:
int nlayers = w.shape[1] - 2
int i
int j
int offset
unsigned int batch = w.shape[0]
int npoints = x.size
np.ndarray yout = np.repeat(
np.empty_like(x, np.float64)[np.newaxis, ...], batch, axis=0
)
double *x_data
double *bkg_data
double *scale_data
double *y_out_data
double *coefs
double *coefs_arr
if not x.flags['C_CONTIGUOUS']:
x = np.ascontiguousarray(x, dtype=np.float64)
x_data = <float64_t *>np.PyArray_DATA(x)
y_out_data = <float64_t *>np.PyArray_DATA(yout)
scale_data = <float64_t *>np.PyArray_DATA(scale)
bkg_data = <float64_t *> np.PyArray_DATA(bkg)
offset = 4*nlayers + 8
coefs_arr = <double*> PyMem_Malloc(offset * sizeof(double) * batch)
if not coefs_arr:
raise MemoryError()
try:
for i in range(batch):
_o = offset * i
coefs = &coefs_arr[_o]
coefs[0] = nlayers
coefs[1] = scale_data[i]
coefs[2] = w[i, 0, 1]
coefs[3] = w[i, 0, 2]
coefs[4] = w[i, -1, 1]
coefs[5] = w[i, -1, 2]
coefs[6] = bkg_data[i]
coefs[7] = w[i, -1, 3]
if nlayers:
for j in range(nlayers):
coefs[8 + 4*j] = w[i, j + 1, 0]
coefs[9 + 4*j] = w[i, j + 1, 1]
coefs[10 + 4*j] = w[i, j + 1, 2]
coefs[11 + 4*j] = w[i, j + 1, 3]
abeles_wrapper_MT(
batch,
4*nlayers + 8,
coefs_arr,
npoints,
y_out_data,
x_data,
threads
)
finally:
PyMem_Free(coefs_arr)
return yout
cpdef np.ndarray gepore(
np.ndarray x,
double[:, :] w,
double H=0.0,
double Aguide=270,
double scale=1.0,
double bkg=0.,
int threads=-1,
):
"""
Abeles matrix formalism for calculating polarised neutron reflectivity
from a stratified medium.
Parameters
----------
q: array_like
the q values required for the calculation.
Q = 4 * Pi / lambda * sin(omega).
Units = Angstrom**-1
layers: np.ndarray
coefficients required for the calculation, has shape (2 + N, 6),
where N is the number of layers
layers[0, 1] - SLD of fronting (/1e-6 Angstrom**-2)
layers[0, 2] - iSLD of fronting (/1e-6 Angstrom**-2)
layers[N, 0] - thickness of layer N
layers[N, 1] - SLD of layer N (/1e-6 Angstrom**-2)
layers[N, 2] - iSLD of layer N (/1e-6 Angstrom**-2)
layers[N, 3] - roughness between layer N-1/N
layers[N, 4] - magnetic SLD (/1e-6 Angstrom**-2)
layers[N, 5] - angle of the magnetism within the layer (degrees)
layers[-1, 1] - SLD of backing (/1e-6 Angstrom**-2)
layers[-1, 2] - iSLD of backing (/1e-6 Angstrom**-2)
layers[-1, 3] - roughness between backing and last layer
H: float
Applied magnetic field (T)
Aguide: float
Orientation angle for applied magnetic field (degrees). Should be 270
or 90 for field in plane of sample.
scale: float
Multiply all reflectivities by this value.
bkg: float
Linear background to be added to all reflectivities
threads: int, optional
How many threads you would like to use in the reflectivity calculation.
If `threads == -1` then the calculation is automatically spread over
`multiprocessing.cpu_count()` threads.
Returns
-------
Reflectivity: np.ndarray
Calculated reflectivity values for each q value. Has shape `(4, M)`
where M is the number of points in `q`.
"""
if w.shape[1] != 6 or w.shape[0] < 2:
raise ValueError(
"Layer parameters for _creflect.gepore must be an"
"array of shape (>=2, 6)"
)
if x.dtype != np.float64:
raise ValueError("Q values for _creflect.gepore must be np.float64")
if not x.flags['C_CONTIGUOUS']:
x = np.ascontiguousarray(x, dtype=np.float64)
cdef:
int npoints = x.size
np.ndarray y = np.zeros((4, npoints), np.float64)
const double *xP
double *d_data
double *sigma_data
double *rho_data
double *irho_data
double *rhoM_data
double *thetaM_data
double *Ra
double *Rb
double *Rc
double *Rd
int layers = w.shape[0]
d = np.zeros(layers)
sigma = np.zeros(layers - 1)
rho = np.zeros(layers)
irho = np.zeros(layers)
rhoM = np.zeros(layers)
thetaM = np.zeros(layers)
if threads == -1:
threads = NCPU
elif threads == 0:
threads = 1
xP = <float64_t *> np.PyArray_DATA(x)
d[:] = w[:, 0]
sigma[:] = w[1:, 3]
rho[:] = w[:, 1]
irho[:] = w[:, 2]
rhoM[:] = w[:, 4]
thetaM[:] = w[:, 5]
d_data = <float64_t *>np.PyArray_DATA(d)
sigma_data = <float64_t *>np.PyArray_DATA(sigma)
rho_data = <float64_t *>np.PyArray_DATA(rho)
irho_data = <float64_t *>np.PyArray_DATA(irho)
rhoM_data = <float64_t *>np.PyArray_DATA(rhoM)
thetaM_data = <float64_t *>np.PyArray_DATA(thetaM)
Ra = <float64_t *> np.PyArray_DATA(y[0])
Rb = <float64_t *> np.PyArray_DATA(y[1])
Rc = <float64_t *> np.PyArray_DATA(y[2])
Rd = <float64_t *> np.PyArray_DATA(y[3])
if threads > 1:
pnr_MT(
threads,
layers,
d_data,
sigma_data,
rho_data,
irho_data,
rhoM_data,
thetaM_data,
H,
Aguide,
npoints,
xP,
Ra,
Rb,
Rc,
Rd
)
else:
pnr(
layers,
d_data,
sigma_data,
rho_data,
irho_data,
rhoM_data,
thetaM_data,
H,
Aguide,
npoints,
xP,
Ra,
Rb,
Rc,
Rd
)
y *= scale
y += bkg
return y