forked from refnx/refnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_cyreflect.pyx
338 lines (273 loc) · 10.6 KB
/
_cyreflect.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# cython: language_level=3, boundscheck=False
from libc.stdlib cimport abort, malloc, free
import numpy as np
cimport numpy as np
cimport cython
cimport openmp
from cython.parallel import prange, parallel, threadid
np.import_array()
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
TINY = 1e-30
cdef extern from "<complex>" namespace "std" nogil:
double complex sqrt(double complex)
double complex exp(double complex)
double complex conj(double complex)
cdef extern from "<math.h>" nogil:
double fabs(double)
cdef extern from "refcaller.h" nogil:
void abeles_wrapper(int numcoefs, const double *coefP, int npoints, double *yP,
const double *xP)
cpdef abeles(x, np.ndarray[DTYPE_t, ndim=2] w,
double scale=1.0, double bkg=0., int threads=-1):
# we need the abscissae in a contiguous block of memory
cdef double[:] xtemp = np.ascontiguousarray(x, dtype=DTYPE).flatten()
if w.shape[1] != 4 or w.shape[0] < 2:
raise ValueError("Parameters for reflection must have shape (>2, 4)")
if threads > 0:
num_threads = int(threads)
else:
num_threads = openmp.omp_get_max_threads()
y = _abeles(xtemp, w, scale, bkg, num_threads)
y = np.reshape(y, x.shape)
return y
cpdef parratt(x, np.ndarray[DTYPE_t, ndim=2] w,
double scale=1.0, double bkg=0., int threads=-1):
# we need the abscissae in a contiguous block of memory
cdef double[:] xtemp = np.ascontiguousarray(x, dtype=DTYPE).flatten()
if w.shape[1] != 4 or w.shape[0] < 2:
raise ValueError("Parameters for reflection must have shape (>2, 4)")
if threads > 0:
num_threads = int(threads)
else:
num_threads = openmp.omp_get_max_threads()
y = _parratt(xtemp, w, scale, bkg, num_threads)
y = np.reshape(y, x.shape)
return y
@cython.boundscheck(False)
@cython.cdivision(True)
cdef _abeles(double[:] x,
np.ndarray[np.float64_t, ndim=2] w,
double scale=1.0, double bkg=0., int num_threads=1):
cdef:
int _num_threads = num_threads
int nlayers = w.shape[0] - 2
int npoints = x.shape[0]
int layer, i, m
double complex M_4PI = 4 * np.pi
double complex I = 1j
double complex rj, k, k_next, q2, rough, mi00, mi01, mi10, mi11, thick
double complex mrtot00, mrtot01, mrtot10, mrtot11, p0, p1, beta, arg
np.ndarray[np.complex128_t, ndim=1] y = np.zeros(npoints,
np.complex128)
np.ndarray[np.complex128_t, ndim=1] roughsqr = np.empty(
nlayers + 1, np.complex128)
np.ndarray[np.complex128_t, ndim=1] SLD = np.zeros(
(w.shape[0]), np.complex128)
double[:, :] wbuf = w
double complex[:] SLDbuf = SLD
double complex[:] roughbuf = roughsqr
for i in range(1, nlayers + 2):
SLDbuf[i] = M_4PI * (wbuf[i, 1] - wbuf[0, 1] +
1j * (fabs(wbuf[i, 2]) + TINY)) * 1.e-6
roughbuf[i - 1] = -2. * wbuf[i, 3] * wbuf[i, 3]
for i in prange(npoints, nogil=True, num_threads=_num_threads):
q2 = x[i] * x[i] / 4.
k = x[i] / 2.
for m in range(0, nlayers + 1):
k_next = sqrt(q2 - SLDbuf[m + 1])
rj = (k - k_next) / (k + k_next) * exp(k * k_next * roughbuf[m])
if not m:
# characteristic matrix for first interface
mrtot00 = 1.
mrtot01 = rj
mrtot11 = 1.
mrtot10 = rj
else:
# work out the beta for the layer
thick = wbuf[m, 0]
beta = exp(k * thick * I)
# this is the characteristic matrix of a layer
mi00 = beta
mi11 = 1. / beta
mi10 = rj * mi00
mi01 = rj * mi11
# matrix multiply
p0 = mrtot00 * mi00 + mrtot10 * mi01
p1 = mrtot00 * mi10 + mrtot10 * mi11
mrtot00 = p0
mrtot10 = p1
p0 = mrtot01 * mi00 + mrtot11 * mi01
p1 = mrtot01 * mi10 + mrtot11 * mi11
mrtot01 = p0
mrtot11 = p1
k = k_next
y[i] = (mrtot01 / mrtot00)
y[i] = y[i] * conj(y[i])
y[i] *= scale
y[i] += bkg
return y.real
@cython.boundscheck(False)
@cython.cdivision(True)
cdef _parratt(double[:] x,
np.ndarray[np.float64_t, ndim=2] w,
double scale=1.0, double bkg=0., int num_threads=1):
cdef:
int _num_threads = num_threads
int nlayers = w.shape[0] - 2
int npoints = x.shape[0]
int layer, i, idx
double complex M_4PI = 4 * np.pi
double complex I = 1j
double complex rj, kn, kn_next, qq2, rough
double complex beta, arg, RRJ, RRJ_1
np.ndarray[np.complex128_t, ndim=1] y = np.zeros(npoints,
np.complex128)
np.ndarray[np.complex128_t, ndim=1] roughsqr = np.empty(
nlayers + 1, np.complex128)
np.ndarray[np.complex128_t, ndim=1] SLD = np.zeros(
(w.shape[0]), np.complex128)
double[:, :] wbuf = w
double complex[:] SLDbuf = SLD
double complex[:] roughbuf = roughsqr
for idx in range(1, nlayers + 2):
SLDbuf[idx] = M_4PI * (wbuf[idx, 1] - wbuf[0, 1] +
I * (fabs(wbuf[idx, 2]) + TINY)) * 1.e-6
roughbuf[idx - 1] = -2. * wbuf[idx, 3] * wbuf[idx, 3]
for i in prange(npoints, nogil=True, num_threads=_num_threads):
qq2 = x[i] * x[i] / 4.
# start from subphase
kn_next = sqrt(qq2 - SLD[nlayers + 1])
for idx in range(nlayers, -1, -1):
# wavevector in the layer
kn = sqrt(qq2 - SLD[idx])
# reflectance of the interface
# factor of 2 is already incorporated in rough_sqr
rj = ((kn - kn_next)/(kn + kn_next)
* exp(kn * kn_next * roughbuf[idx]))
if (idx == nlayers):
# characteristic matrix for first interface
RRJ = rj
else:
beta = exp(-2.0 * I * kn_next * fabs(wbuf[idx + 1, 0]))
RRJ = (rj + RRJ_1 * beta) / (1 + RRJ_1 * beta * rj)
kn_next = kn
RRJ_1 = RRJ
y[i] = RRJ_1 * conj(RRJ_1)
y[i] *= scale
y[i] += bkg
return y.real
cpdef np.ndarray abeles_vectorised(
np.ndarray x,
double[:, :, :] w,
scale=None,
bkg=None,
int threads=-1):
"""
Vectorised Abeles matrix formalism for calculating reflectivity from a
stratified medium.
Parameters
----------
q: array_like
the q values required for the calculation.
Q = 4 * Pi / lambda * sin(omega).
Units = Angstrom**-1
layers: np.ndarray
coefficients required for the calculation, has shape (M, 2 + N, 4).
The calculation is vectorised over the M sets of film parameters, and
N is the number of layers in each film.
layers[:, 0, 1] - SLD of fronting (/1e-6 Angstrom**-2)
layers[:, 0, 2] - iSLD of fronting (/1e-6 Angstrom**-2)
layers[:, N, 0] - thickness of layer N
layers[:, N, 1] - SLD of layer N (/1e-6 Angstrom**-2)
layers[:, N, 2] - iSLD of layer N (/1e-6 Angstrom**-2)
layers[:, N, 3] - roughness between layer N-1/N
layers[:, -1, 1] - SLD of backing (/1e-6 Angstrom**-2)
layers[:, -1, 2] - iSLD of backing (/1e-6 Angstrom**-2)
layers[:, -1, 3] - roughness between backing and last layer
scale: array-like, optional
Multiply all reflectivities by this value.
bkg: array-like, optional
Linear background to be added to all reflectivities
threads: int, optional
How many threads you would like to use in the reflectivity calculation.
If `threads == -1` then the calculation is automatically spread over
`multiprocessing.cpu_count()` threads.
Returns
-------
Reflectivity: np.ndarray
Calculated reflectivity values for each q value.
"""
if w.shape[2] != 4 or w.shape[1] < 2:
raise ValueError(
"Layer parameters for _creflect.vec_abeles must be an"
"array of shape (>=1, >2, 4)"
)
if x.dtype != np.float64:
raise ValueError("Q values for _creflect.vec_abeles must be np.float64")
if scale is not None:
if not isinstance(scale, np.ndarray) or scale.shape != w.shape[0]:
raise ValueError("scale must be an array of shape (M,)")
else:
scale = np.ones(w.shape[0], dtype=np.float64)
if bkg is not None:
if not isinstance(bkg, np.ndarray) or bkg.shape != w.shape[0]:
raise ValueError("bkg must be an array of shape (M,)")
else:
bkg = np.zeros(w.shape[0])
cdef:
int nlayers = w.shape[1] - 2
int i
int j
int num_threads
int offset
int nvec = w.shape[0]
int npoints = x.size
np.ndarray yout = np.repeat(
np.empty_like(x, np.float64)[np.newaxis, ...], nvec, axis=0
)
double *x_data
double *bkg_data
double *scale_data
double *y_out_data
double *coefs
double *coefs_arr
if not x.flags['C_CONTIGUOUS']:
x = np.ascontiguousarray(x, dtype=np.float64)
x_data = <DTYPE_t *>np.PyArray_DATA(x)
y_out_data = <DTYPE_t *>np.PyArray_DATA(yout)
scale_data = <DTYPE_t *>np.PyArray_DATA(scale)
bkg_data = <DTYPE_t *> np.PyArray_DATA(bkg)
if threads > 0:
num_threads = int(threads)
else:
num_threads = openmp.omp_get_max_threads()
offset = 4*nlayers + 8
coefs_arr = <double *> malloc(offset * sizeof(double) * num_threads)
if coefs_arr is NULL:
abort()
for i in prange(nvec, nogil=True, num_threads=num_threads):
coefs = &coefs_arr[offset * threadid()]
coefs[0] = nlayers
coefs[1] = scale_data[i]
coefs[2] = w[i, 0, 1]
coefs[3] = w[i, 0, 2]
coefs[4] = w[i, -1, 1]
coefs[5] = w[i, -1, 2]
coefs[6] = bkg_data[i]
coefs[7] = w[i, -1, 3]
if nlayers:
for j in range(nlayers):
coefs[8 + 4*j] = w[i, j + 1, 0]
coefs[9 + 4*j] = w[i, j + 1, 1]
coefs[10 + 4*j] = w[i, j + 1, 2]
coefs[11 + 4*j] = w[i, j + 1, 3]
abeles_wrapper(
4*nlayers + 8,
coefs,
npoints,
&y_out_data[npoints * i],
x_data
)
free(coefs_arr)
return yout