forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstructure.py
358 lines (341 loc) · 9.17 KB
/
structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# -*- coding: utf-8 -*-
'''
General documentation architecture:
Home
Index
- Getting started
Getting started with the sequential model
Getting started with the functional api
FAQ
- Models
About Keras models
explain when one should use Sequential or functional API
explain compilation step
explain weight saving, weight loading
explain serialization, deserialization
Sequential
Model (functional API)
- Layers
About Keras layers
explain common layer functions: get_weights, set_weights, get_config
explain input_shape
explain usage on non-Keras tensors
Core Layers
Convolutional Layers
Pooling Layers
Locally-connected Layers
Recurrent Layers
Embedding Layers
Merge Layers
Advanced Activations Layers
Normalization Layers
Noise Layers
Layer Wrappers
Writing your own Keras layers
- Preprocessing
Sequence Preprocessing
Text Preprocessing
Image Preprocessing
Losses
Metrics
Optimizers
Activations
Callbacks
Datasets
Applications
Backend
Initializers
Regularizers
Constraints
Visualization
Scikit-learn API
Utils
Contributing
'''
from keras import utils
from keras import layers
from keras.layers import advanced_activations
from keras.layers import noise
from keras.layers import wrappers
from keras import initializers
from keras import optimizers
from keras import callbacks
from keras import models
from keras import losses
from keras import metrics
from keras import backend
from keras import constraints
from keras import activations
from keras import preprocessing
EXCLUDE = {
'Optimizer',
'TFOptimizer',
'Wrapper',
'get_session',
'set_session',
'CallbackList',
'serialize',
'deserialize',
'get',
'set_image_dim_ordering',
'normalize_data_format',
'image_dim_ordering',
'get_variable_shape',
'Constraint'
}
# For each class to document, it is possible to:
# 1) Document only the class: [classA, classB, ...]
# 2) Document all its methods: [classA, (classB, "*")]
# 3) Choose which methods to document (methods listed as strings):
# [classA, (classB, ["method1", "method2", ...]), ...]
# 4) Choose which methods to document (methods listed as qualified names):
# [classA, (classB, [module.classB.method1, module.classB.method2, ...]), ...]
PAGES = [
{
'page': 'models/sequential.md',
'methods': [
models.Sequential.compile,
models.Sequential.fit,
models.Sequential.evaluate,
models.Sequential.predict,
models.Sequential.train_on_batch,
models.Sequential.test_on_batch,
models.Sequential.predict_on_batch,
models.Sequential.fit_generator,
models.Sequential.evaluate_generator,
models.Sequential.predict_generator,
models.Sequential.get_layer,
],
},
{
'page': 'models/model.md',
'methods': [
models.Model.compile,
models.Model.fit,
models.Model.evaluate,
models.Model.predict,
models.Model.train_on_batch,
models.Model.test_on_batch,
models.Model.predict_on_batch,
models.Model.fit_generator,
models.Model.evaluate_generator,
models.Model.predict_generator,
models.Model.get_layer,
]
},
{
'page': 'layers/core.md',
'classes': [
layers.Dense,
layers.Activation,
layers.Dropout,
layers.Flatten,
layers.Input,
layers.Reshape,
layers.Permute,
layers.RepeatVector,
layers.Lambda,
layers.ActivityRegularization,
layers.Masking,
layers.SpatialDropout1D,
layers.SpatialDropout2D,
layers.SpatialDropout3D,
],
},
{
'page': 'layers/convolutional.md',
'classes': [
layers.Conv1D,
layers.Conv2D,
layers.SeparableConv1D,
layers.SeparableConv2D,
layers.DepthwiseConv2D,
layers.Conv2DTranspose,
layers.Conv3D,
layers.Conv3DTranspose,
layers.Cropping1D,
layers.Cropping2D,
layers.Cropping3D,
layers.UpSampling1D,
layers.UpSampling2D,
layers.UpSampling3D,
layers.ZeroPadding1D,
layers.ZeroPadding2D,
layers.ZeroPadding3D,
],
},
{
'page': 'layers/pooling.md',
'classes': [
layers.MaxPooling1D,
layers.MaxPooling2D,
layers.MaxPooling3D,
layers.AveragePooling1D,
layers.AveragePooling2D,
layers.AveragePooling3D,
layers.GlobalMaxPooling1D,
layers.GlobalAveragePooling1D,
layers.GlobalMaxPooling2D,
layers.GlobalAveragePooling2D,
layers.GlobalMaxPooling3D,
layers.GlobalAveragePooling3D,
],
},
{
'page': 'layers/local.md',
'classes': [
layers.LocallyConnected1D,
layers.LocallyConnected2D,
],
},
{
'page': 'layers/recurrent.md',
'classes': [
layers.RNN,
layers.SimpleRNN,
layers.GRU,
layers.LSTM,
layers.ConvLSTM2D,
layers.ConvLSTM2DCell,
layers.SimpleRNNCell,
layers.GRUCell,
layers.LSTMCell,
layers.CuDNNGRU,
layers.CuDNNLSTM,
],
},
{
'page': 'layers/embeddings.md',
'classes': [
layers.Embedding,
],
},
{
'page': 'layers/normalization.md',
'classes': [
layers.BatchNormalization,
],
},
{
'page': 'layers/advanced-activations.md',
'all_module_classes': [advanced_activations],
},
{
'page': 'layers/noise.md',
'all_module_classes': [noise],
},
{
'page': 'layers/merge.md',
'classes': [
layers.Add,
layers.Subtract,
layers.Multiply,
layers.Average,
layers.Maximum,
layers.Minimum,
layers.Concatenate,
layers.Dot,
],
'functions': [
layers.add,
layers.subtract,
layers.multiply,
layers.average,
layers.maximum,
layers.minimum,
layers.concatenate,
layers.dot,
]
},
{
'page': 'preprocessing/sequence.md',
'functions': [
preprocessing.sequence.pad_sequences,
preprocessing.sequence.skipgrams,
preprocessing.sequence.make_sampling_table,
],
'classes': [
preprocessing.sequence.TimeseriesGenerator,
]
},
{
'page': 'preprocessing/image.md',
'classes': [
(preprocessing.image.ImageDataGenerator, '*')
]
},
{
'page': 'preprocessing/text.md',
'functions': [
preprocessing.text.hashing_trick,
preprocessing.text.one_hot,
preprocessing.text.text_to_word_sequence,
],
'classes': [
preprocessing.text.Tokenizer,
]
},
{
'page': 'layers/wrappers.md',
'all_module_classes': [wrappers],
},
{
'page': 'metrics.md',
'all_module_functions': [metrics],
},
{
'page': 'losses.md',
'all_module_functions': [losses],
},
{
'page': 'initializers.md',
'all_module_functions': [initializers],
'all_module_classes': [initializers],
},
{
'page': 'optimizers.md',
'all_module_classes': [optimizers],
},
{
'page': 'callbacks.md',
'all_module_classes': [callbacks],
},
{
'page': 'activations.md',
'all_module_functions': [activations],
},
{
'page': 'backend.md',
'all_module_functions': [backend],
},
{
'page': 'constraints.md',
'all_module_classes': [constraints],
},
{
'page': 'utils.md',
'functions': [utils.to_categorical,
utils.normalize,
utils.get_file,
utils.print_summary,
utils.plot_model,
utils.multi_gpu_model],
'classes': [utils.CustomObjectScope,
utils.HDF5Matrix,
utils.Sequence],
},
]
ROOT = 'http://keras.io/'
template_np_implementation = """# Numpy implementation
```python
{{code}}
```
"""
template_hidden_np_implementation = """# Numpy implementation
<details>
<summary>Show the Numpy implementation</summary>
```python
{{code}}
```
</details>
"""