-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathconfig.py
146 lines (121 loc) · 4.29 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import yaml
from torchvision import transforms
from src import data, generation
from src.dpsr import DPSR
from ipdb import set_trace as st
# Generator for final mesh extraction
def get_generator(model, cfg, device, **kwargs):
''' Returns the generator object.
Args:
model (nn.Module): Occupancy Network model
cfg (dict): imported yaml config
device (device): pytorch device
'''
if cfg['generation']['psr_resolution'] == 0:
psr_res = cfg['model']['grid_res']
psr_sigma = cfg['model']['psr_sigma']
else:
psr_res = cfg['generation']['psr_resolution']
psr_sigma = cfg['generation']['psr_sigma']
dpsr = DPSR(res=(psr_res, psr_res, psr_res),
sig= psr_sigma).to(device)
generator = generation.Generator3D(
model,
device=device,
threshold=cfg['data']['zero_level'],
sample=cfg['generation']['use_sampling'],
input_type = cfg['data']['input_type'],
padding=cfg['data']['padding'],
dpsr=dpsr,
psr_tanh=cfg['model']['psr_tanh']
)
return generator
# Datasets
def get_dataset(mode, cfg, return_idx=False):
''' Returns the dataset.
Args:
model (nn.Module): the model which is used
cfg (dict): config dictionary
return_idx (bool): whether to include an ID field
'''
dataset_type = cfg['data']['dataset']
dataset_folder = cfg['data']['path']
categories = cfg['data']['class']
# Get split
splits = {
'train': cfg['data']['train_split'],
'val': cfg['data']['val_split'],
'test': cfg['data']['test_split'],
'vis': cfg['data']['val_split'],
}
split = splits[mode]
# Create dataset
if dataset_type == 'Shapes3D':
fields = get_data_fields(mode, cfg)
# Input fields
inputs_field = get_inputs_field(mode, cfg)
if inputs_field is not None:
fields['inputs'] = inputs_field
if return_idx:
fields['idx'] = data.IndexField()
dataset = data.Shapes3dDataset(
dataset_folder, fields,
split=split,
categories=categories,
cfg = cfg
)
else:
raise ValueError('Invalid dataset "%s"' % cfg['data']['dataset'])
return dataset
def get_inputs_field(mode, cfg):
''' Returns the inputs fields.
Args:
mode (str): the mode which is used
cfg (dict): config dictionary
'''
input_type = cfg['data']['input_type']
if input_type is None:
inputs_field = None
elif input_type == 'pointcloud':
noise_level = cfg['data']['pointcloud_noise']
if cfg['data']['pointcloud_outlier_ratio']>0:
transform = transforms.Compose([
data.SubsamplePointcloud(cfg['data']['pointcloud_n']),
data.PointcloudNoise(noise_level),
data.PointcloudOutliers(cfg['data']['pointcloud_outlier_ratio'])
])
else:
transform = transforms.Compose([
data.SubsamplePointcloud(cfg['data']['pointcloud_n']),
data.PointcloudNoise(noise_level)
])
data_type = cfg['data']['data_type']
inputs_field = data.PointCloudField(
cfg['data']['pointcloud_file'], data_type, transform,
multi_files= cfg['data']['multi_files']
)
else:
raise ValueError(
'Invalid input type (%s)' % input_type)
return inputs_field
def get_data_fields(mode, cfg):
''' Returns the data fields.
Args:
mode (str): the mode which is used
cfg (dict): imported yaml config
'''
data_type = cfg['data']['data_type']
fields = {}
if (mode in ('val', 'test')):
transform = data.SubsamplePointcloud(100000)
else:
transform = data.SubsamplePointcloud(cfg['data']['num_gt_points'])
data_name = cfg['data']['pointcloud_file']
fields['gt_points'] = data.PointCloudField(data_name,
transform=transform, data_type=data_type, multi_files=cfg['data']['multi_files'])
if data_type == 'psr_full':
if mode != 'test':
fields['gt_psr'] = data.FullPSRField(multi_files=cfg['data']['multi_files'])
else:
raise ValueError('Invalid data type (%s)' % data_type)
return fields