-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy patheval.py
168 lines (142 loc) · 5.76 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import logging
import numpy as np
import trimesh
from pykdtree.kdtree import KDTree
EMPTY_PCL_DICT = {
'completeness': np.sqrt(3),
'accuracy': np.sqrt(3),
'completeness2': 3,
'accuracy2': 3,
'chamfer': 6,
}
EMPTY_PCL_DICT_NORMALS = {
'normals completeness': -1.,
'normals accuracy': -1.,
'normals': -1.,
}
logger = logging.getLogger(__name__)
class MeshEvaluator(object):
''' Mesh evaluation class.
It handles the mesh evaluation process.
Args:
n_points (int): number of points to be used for evaluation
'''
def __init__(self, n_points=100000):
self.n_points = n_points
def eval_mesh(self, mesh, pointcloud_tgt, normals_tgt, thresholds=np.linspace(1./1000, 1, 1000)):
''' Evaluates a mesh.
Args:
mesh (trimesh): mesh which should be evaluated
pointcloud_tgt (numpy array): target point cloud
normals_tgt (numpy array): target normals
thresholds (numpy arry): for F-Score
'''
if len(mesh.vertices) != 0 and len(mesh.faces) != 0:
pointcloud, idx = mesh.sample(self.n_points, return_index=True)
pointcloud = pointcloud.astype(np.float32)
normals = mesh.face_normals[idx]
else:
pointcloud = np.empty((0, 3))
normals = np.empty((0, 3))
out_dict = self.eval_pointcloud(
pointcloud, pointcloud_tgt, normals, normals_tgt, thresholds=thresholds)
return out_dict
def eval_pointcloud(self, pointcloud, pointcloud_tgt,
normals=None, normals_tgt=None,
thresholds=np.linspace(1./1000, 1, 1000)):
''' Evaluates a point cloud.
Args:
pointcloud (numpy array): predicted point cloud
pointcloud_tgt (numpy array): target point cloud
normals (numpy array): predicted normals
normals_tgt (numpy array): target normals
thresholds (numpy array): threshold values for the F-score calculation
'''
# Return maximum losses if pointcloud is empty
if pointcloud.shape[0] == 0:
logger.warn('Empty pointcloud / mesh detected!')
out_dict = EMPTY_PCL_DICT.copy()
if normals is not None and normals_tgt is not None:
out_dict.update(EMPTY_PCL_DICT_NORMALS)
return out_dict
pointcloud = np.asarray(pointcloud)
pointcloud_tgt = np.asarray(pointcloud_tgt)
# Completeness: how far are the points of the target point cloud
# from thre predicted point cloud
completeness, completeness_normals = distance_p2p(
pointcloud_tgt, normals_tgt, pointcloud, normals
)
recall = get_threshold_percentage(completeness, thresholds)
completeness2 = completeness**2
completeness = completeness.mean()
completeness2 = completeness2.mean()
completeness_normals = completeness_normals.mean()
# Accuracy: how far are th points of the predicted pointcloud
# from the target pointcloud
accuracy, accuracy_normals = distance_p2p(
pointcloud, normals, pointcloud_tgt, normals_tgt
)
precision = get_threshold_percentage(accuracy, thresholds)
accuracy2 = accuracy**2
accuracy = accuracy.mean()
accuracy2 = accuracy2.mean()
accuracy_normals = accuracy_normals.mean()
# Chamfer distance
chamferL2 = 0.5 * (completeness2 + accuracy2)
normals_correctness = (
0.5 * completeness_normals + 0.5 * accuracy_normals
)
chamferL1 = 0.5 * (completeness + accuracy)
# F-Score
F = [
2 * precision[i] * recall[i] / (precision[i] + recall[i])
for i in range(len(precision))
]
out_dict = {
'completeness': completeness,
'accuracy': accuracy,
'normals completeness': completeness_normals,
'normals accuracy': accuracy_normals,
'normals': normals_correctness,
'completeness2': completeness2,
'accuracy2': accuracy2,
'chamfer-L2': chamferL2,
'chamfer-L1': chamferL1,
'f-score': F[9], # threshold = 1.0%
'f-score-15': F[14], # threshold = 1.5%
'f-score-20': F[19], # threshold = 2.0%
}
return out_dict
def distance_p2p(points_src, normals_src, points_tgt, normals_tgt):
''' Computes minimal distances of each point in points_src to points_tgt.
Args:
points_src (numpy array): source points
normals_src (numpy array): source normals
points_tgt (numpy array): target points
normals_tgt (numpy array): target normals
'''
kdtree = KDTree(points_tgt)
dist, idx = kdtree.query(points_src)
if normals_src is not None and normals_tgt is not None:
normals_src = \
normals_src / np.linalg.norm(normals_src, axis=-1, keepdims=True)
normals_tgt = \
normals_tgt / np.linalg.norm(normals_tgt, axis=-1, keepdims=True)
normals_dot_product = (normals_tgt[idx] * normals_src).sum(axis=-1)
# Handle normals that point into wrong direction gracefully
# (mostly due to mehtod not caring about this in generation)
normals_dot_product = np.abs(normals_dot_product)
else:
normals_dot_product = np.array(
[np.nan] * points_src.shape[0], dtype=np.float32)
return dist, normals_dot_product
def get_threshold_percentage(dist, thresholds):
''' Evaluates a point cloud.
Args:
dist (numpy array): calculated distance
thresholds (numpy array): threshold values for the F-score calculation
'''
in_threshold = [
(dist <= t).mean() for t in thresholds
]
return in_threshold