-
Notifications
You must be signed in to change notification settings - Fork 218
/
Copy path02_linestring_example.cpp
232 lines (185 loc) · 7.89 KB
/
02_linestring_example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Linestring Example
#include <algorithm> // for reverse, unique
#include <iostream>
#include <iterator>
#include <utility>
#include <vector>
#include <boost/geometry/geometry.hpp>
#include <boost/geometry/geometries/linestring.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/polygon.hpp>
// Optional includes and defines to handle c-arrays as points, std::vectors as linestrings
#include <boost/geometry/geometries/register/linestring.hpp>
#include <boost/geometry/geometries/adapted/c_array.hpp>
BOOST_GEOMETRY_REGISTER_C_ARRAY_CS(cs::cartesian)
BOOST_GEOMETRY_REGISTER_LINESTRING_TEMPLATED(std::vector)
BOOST_GEOMETRY_REGISTER_LINESTRING_TEMPLATED(std::deque)
template<typename P>
inline void translate_function(P& p)
{
p.x(p.x() + 100.0);
}
template<typename P>
struct scale_functor
{
inline void operator()(P& p)
{
p.x(p.x() * 1000.0);
p.y(p.y() * 1000.0);
}
};
template<typename Point>
struct round_coordinates
{
typedef typename boost::geometry::coordinate_type<Point>::type coordinate_type;
coordinate_type m_factor;
inline round_coordinates(coordinate_type const& factor)
: m_factor(factor)
{}
template <int Dimension>
inline void round(Point& p)
{
coordinate_type c = boost::geometry::get<Dimension>(p) / m_factor;
int rounded = c;
boost::geometry::set<Dimension>(p, coordinate_type(rounded) * m_factor);
}
inline void operator()(Point& p)
{
round<0>(p);
round<1>(p);
}
};
int main(void)
{
using namespace boost::geometry;
// Define a linestring, which is a vector of points, and add some points
// (we add them deliberately in different ways)
typedef model::d2::point_xy<double> point_2d;
typedef model::linestring<point_2d> linestring_2d;
linestring_2d ls;
// points can be created using "make" and added to a linestring using the std:: "push_back"
ls.push_back(make<point_2d>(1.1, 1.1));
// points can also be assigned using "assign_values" and added to a linestring using "append"
point_2d lp;
assign_values(lp, 2.5, 2.1);
append(ls, lp);
// Lines can be streamed using DSV (delimiter separated values)
std::cout << dsv(ls) << std::endl;
// The bounding box of linestrings can be calculated
typedef model::box<point_2d> box_2d;
box_2d b;
envelope(ls, b);
std::cout << dsv(b) << std::endl;
// The length of the line can be calulated
std::cout << "length: " << length(ls) << std::endl;
// All things from std::vector can be called, because a linestring is a vector
std::cout << "number of points 1: " << ls.size() << std::endl;
// All things from boost ranges can be called because a linestring is considered as a range
std::cout << "number of points 2: " << boost::size(ls) << std::endl;
// Generic function from geometry/OGC delivers the same value
std::cout << "number of points 3: " << num_points(ls) << std::endl;
// The distance from a point to a linestring can be calculated
point_2d p(1.9, 1.2);
std::cout << "distance of " << dsv(p)
<< " to line: " << distance(p, ls) << std::endl;
// A linestring is a vector. However, some algorithms consider "segments",
// which are the line pieces between two points of a linestring.
double d = distance(p, model::segment<point_2d >(ls.front(), ls.back()));
std::cout << "distance: " << d << std::endl;
// Add some three points more, let's do it using a classic array.
// (See documentation for picture of this linestring)
const double c[][2] = { {3.1, 3.1}, {4.9, 1.1}, {3.1, 1.9} };
append(ls, c);
std::cout << "appended: " << dsv(ls) << std::endl;
// Output as iterator-pair on a vector
{
std::vector<point_2d> v;
std::copy(ls.begin(), ls.end(), std::back_inserter(v));
std::cout
<< "as vector: "
<< dsv(v)
<< std::endl;
}
// All algorithms from std can be used: a linestring is a vector
std::reverse(ls.begin(), ls.end());
std::cout << "reversed: " << dsv(ls) << std::endl;
std::reverse(boost::begin(ls), boost::end(ls));
// The other way, using a vector instead of a linestring, is also possible
std::vector<point_2d> pv(ls.begin(), ls.end());
std::cout << "length: " << length(pv) << std::endl;
// If there are double points in the line, you can use unique to remove them
// So we add the last point, print, make a unique copy and print
{
// (sidenote, we have to make copies, because
// ls.push_back(ls.back()) often succeeds but
// IS dangerous and erroneous!
point_2d last = ls.back(), first = ls.front();
ls.push_back(last);
ls.insert(ls.begin(), first);
}
std::cout << "extra duplicate points: " << dsv(ls) << std::endl;
{
linestring_2d ls_copy;
std::unique_copy(ls.begin(), ls.end(), std::back_inserter(ls_copy),
boost::geometry::equal_to<point_2d>());
ls = ls_copy;
std::cout << "uniquecopy: " << dsv(ls) << std::endl;
}
// Lines can be simplified. This removes points, but preserves the shape
linestring_2d ls_simplified;
simplify(ls, ls_simplified, 0.5);
std::cout << "simplified: " << dsv(ls_simplified) << std::endl;
// for_each:
// 1) Lines can be visited with std::for_each
// 2) for_each_point is also defined for all geometries
// 3) for_each_segment is defined for all geometries to all segments
// 4) loop is defined for geometries to visit segments
// with state apart, and to be able to break out (not shown here)
{
linestring_2d lscopy = ls;
std::for_each(lscopy.begin(), lscopy.end(), translate_function<point_2d>);
for_each_point(lscopy, scale_functor<point_2d>());
for_each_point(lscopy, translate_function<point_2d>);
std::cout << "modified line: " << dsv(lscopy) << std::endl;
}
// Lines can be clipped using a clipping box. Clipped lines are added to the output iterator
box_2d cb(point_2d(1.5, 1.5), point_2d(4.5, 2.5));
std::vector<linestring_2d> clipped;
intersection(cb, ls, clipped);
// Also possible: clip-output to a vector of vectors
std::vector<std::vector<point_2d> > vector_out;
intersection(cb, ls, vector_out);
std::cout << "clipped output as vector:" << std::endl;
for (std::vector<std::vector<point_2d> >::const_iterator it
= vector_out.begin(); it != vector_out.end(); ++it)
{
std::cout << dsv(*it) << std::endl;
}
// Calculate the convex hull of the linestring
model::polygon<point_2d> hull;
convex_hull(ls, hull);
std::cout << "Convex hull:" << dsv(hull) << std::endl;
// All the above assumed 2D Cartesian linestrings. 3D is possible as well
// Let's define a 3D point ourselves, this time using 'float'
typedef model::point<float, 3, cs::cartesian> point_3d;
model::linestring<point_3d> line3;
line3.push_back(make<point_3d>(1,2,3));
line3.push_back(make<point_3d>(4,5,6));
line3.push_back(make<point_3d>(7,8,9));
// Not all algorithms work on 3d lines. For example convex hull does NOT.
// But, for example, length, distance, simplify, envelope and stream do.
std::cout << "3D: length: " << length(line3) << " line: " << dsv(line3) << std::endl;
// With DSV you can also use other delimiters, e.g. JSON style
std::cout << "JSON: "
<< dsv(ls, ", ", "[", "]", ", ", "[ ", " ]")
<< std::endl;
return 0;
}