-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflaskr.py
158 lines (118 loc) · 5.67 KB
/
flaskr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import sys
from flask import Flask, request, redirect, url_for, render_template, flash
from flask import send_from_directory
from werkzeug.utils import secure_filename
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'])
def main():
current_dir = os.path.dirname(__file__)
sys.path.append(os.path.join(current_dir, '..'))
current_dir = current_dir if current_dir is not '' else '.'
app = Flask(__name__) # create the application instance :)
app.config.from_object(__name__) # load config from this file , flaskr.py
# Load default config and override config from an environment variable
app.config.from_envvar('FLASKR_SETTINGS', silent=True)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
from keras_image_classifier.library.cnn_bi_classifier import BiClassifier
from keras_image_classifier.library.cifar10_classifier import Cifar10Classifier
from keras_image_classifier.library.vgg16_classifier import VGG16Classifier
from keras_image_classifier.library.vgg19_classifier import VGG19Classifier
from keras_image_classifier.library.resnet50_classifier import ResNet50Classifier
bi_classifier = BiClassifier()
cifar10_classifier = Cifar10Classifier()
vgg16_classifier = VGG16Classifier()
vgg19_classifier = VGG19Classifier()
resnet50_classifier = ResNet50Classifier()
@app.route('/')
def classifiers():
return render_template('classifiers.html')
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def store_uploaded_image(action):
# check if the post request has the file part
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
return redirect(url_for(action,
filename=filename))
@app.route('/about', methods=['GET'])
def about():
return 'about us'
@app.route('/cats_vs_dogs', methods=['GET', 'POST'])
def cats_vs_dogs():
if request.method == 'POST':
return store_uploaded_image('cats_vs_dogs_result')
return render_template('cats_vs_dogs.html')
@app.route('/cifar10', methods=['GET', 'POST'])
def cifar10():
if request.method == 'POST':
return store_uploaded_image('cifar10_result')
return render_template('cifar10.html')
@app.route('/vgg16', methods=['GET', 'POST'])
def vgg16():
if request.method == 'POST':
return store_uploaded_image('vgg16_result')
return render_template('vgg16.html')
@app.route('/vgg19', methods=['GET', 'POST'])
def vgg19():
if request.method == 'POST':
return store_uploaded_image('vgg19_result')
return render_template('vgg19.html')
@app.route('/resnet50', methods=['GET', 'POST'])
def resnet50():
if request.method == 'POST':
return store_uploaded_image('resnet50_result')
return render_template('resnet50.html')
@app.route('/cats_vs_dogs_result/<filename>')
def cats_vs_dogs_result(filename):
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
probability_of_dog, predicted_label = bi_classifier.predict(filepath)
return render_template('cats_vs_dogs_result.html', filename=filename,
probability_of_dog=probability_of_dog, predicted_label=predicted_label)
@app.route('/cifar10_result/<filename>')
def cifar10_result(filename):
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
predicted_class, predicted_label = cifar10_classifier.predict_label(filepath)
return render_template('cifar10_result.html', filename=filename,
predicted_class=predicted_class, predicted_label=predicted_label)
@app.route('/vgg16_result/<filename>')
def vgg16_result(filename):
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
top3 = vgg16_classifier.predict(filepath)
return render_template('vgg16_result.html', filename=filename,
top3=top3)
@app.route('/vgg19_result/<filename>')
def vgg19_result(filename):
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
top3 = vgg19_classifier.predict(filepath)
return render_template('vgg19_result.html', filename=filename,
top3=top3)
@app.route('/resnet50_result/<filename>')
def resnet50_result(filename):
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
top3 = resnet50_classifier.predict(filepath)
return render_template('resnet50_result.html', filename=filename,
top3=top3)
@app.route('/images/<filename>')
def get_image(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'],
filename)
bi_classifier.run_test(current_dir)
cifar10_classifier.run_test(current_dir)
vgg16_classifier.run_test(current_dir)
vgg19_classifier.run_test(current_dir)
resnet50_classifier.run_test(current_dir)
app.run(debug=True, use_reloader=False)
if __name__ == '__main__':
main()