forked from wiseodd/generative-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaae_tensorflow.py
140 lines (98 loc) · 3.55 KB
/
aae_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
mb_size = 32
z_dim = 10
X_dim = mnist.train.images.shape[1]
y_dim = mnist.train.labels.shape[1]
h_dim = 128
c = 0
lr = 1e-3
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
""" Q(z|X) """
X = tf.placeholder(tf.float32, shape=[None, X_dim])
z = tf.placeholder(tf.float32, shape=[None, z_dim])
Q_W1 = tf.Variable(xavier_init([X_dim, h_dim]))
Q_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
Q_W2 = tf.Variable(xavier_init([h_dim, z_dim]))
Q_b2 = tf.Variable(tf.zeros(shape=[z_dim]))
theta_Q = [Q_W1, Q_W2, Q_b1, Q_b2]
def Q(X):
h = tf.nn.relu(tf.matmul(X, Q_W1) + Q_b1)
z = tf.matmul(h, Q_W2) + Q_b2
return z
""" P(X|z) """
P_W1 = tf.Variable(xavier_init([z_dim, h_dim]))
P_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
P_W2 = tf.Variable(xavier_init([h_dim, X_dim]))
P_b2 = tf.Variable(tf.zeros(shape=[X_dim]))
theta_P = [P_W1, P_W2, P_b1, P_b2]
def P(z):
h = tf.nn.relu(tf.matmul(z, P_W1) + P_b1)
logits = tf.matmul(h, P_W2) + P_b2
prob = tf.nn.sigmoid(logits)
return prob, logits
""" D(z) """
D_W1 = tf.Variable(xavier_init([z_dim, h_dim]))
D_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
D_W2 = tf.Variable(xavier_init([h_dim, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
theta_D = [D_W1, D_W2, D_b1, D_b2]
def D(z):
h = tf.nn.relu(tf.matmul(z, D_W1) + D_b1)
logits = tf.matmul(h, D_W2) + D_b2
prob = tf.nn.sigmoid(logits)
return prob
""" Training """
z_sample = Q(X)
_, logits = P(z_sample)
# Sample from random z
X_samples, _ = P(z)
# E[log P(X|z)]
recon_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=X))
# Adversarial loss to approx. Q(z|X)
D_real = D(z)
D_fake = D(z_sample)
D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake))
G_loss = -tf.reduce_mean(tf.log(D_fake))
AE_solver = tf.train.AdamOptimizer().minimize(recon_loss, var_list=theta_P + theta_Q)
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_Q)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
i = 0
for it in range(1000000):
X_mb, _ = mnist.train.next_batch(mb_size)
z_mb = np.random.randn(mb_size, z_dim)
_, recon_loss_curr = sess.run([AE_solver, recon_loss], feed_dict={X: X_mb})
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, z: z_mb})
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={X: X_mb})
if it % 1000 == 0:
print('Iter: {}; D_loss: {:.4}; G_loss: {:.4}; Recon_loss: {:.4}'
.format(it, D_loss_curr, G_loss_curr, recon_loss_curr))
samples = sess.run(X_samples, feed_dict={z: np.random.randn(16, z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)