-
Notifications
You must be signed in to change notification settings - Fork 234
/
Copy pathtest_dse.py
2890 lines (2331 loc) · 113 KB
/
test_dse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from functools import cached_property
import numpy as np
import pytest
from sympy import Mul # noqa
from conftest import (skipif, EVAL, _R, assert_structure, assert_blocking, # noqa
get_params, get_arrays, check_array)
from devito import (NODE, Eq, Inc, Constant, Function, TimeFunction, # noqa
SparseTimeFunction, Dimension, SubDimension,
ConditionalDimension, DefaultDimension, Grid, Operator,
norm, grad, div, dimensions, switchconfig, configuration,
first_derivative, solve, transpose, Abs, cos, exp,
sin, sqrt, floor, Ge, Lt, Derivative)
from devito.exceptions import InvalidArgument, InvalidOperator
from devito.ir import (Conditional, DummyEq, Expression, Iteration, FindNodes,
FindSymbols, ParallelIteration, retrieve_iteration_tree)
from devito.passes.clusters.aliases import collect
from devito.passes.clusters.factorization import collect_nested
from devito.passes.iet.parpragma import VExpanded
from devito.symbolics import (INT, FLOAT, DefFunction, FieldFromPointer, # noqa
IndexedPointer, Keyword, SizeOf, estimate_cost,
pow_to_mul, indexify)
from devito.tools import as_tuple
from devito.types import Scalar, Symbol, PrecomputedSparseTimeFunction
from examples.seismic.acoustic import AcousticWaveSolver
from examples.seismic import demo_model, AcquisitionGeometry
from examples.seismic.tti import AnisotropicWaveSolver
def test_scheduling_after_rewrite():
"""Tests loop scheduling after expression hoisting."""
grid = Grid((10, 10))
u1 = TimeFunction(name="u1", grid=grid, save=10, time_order=2)
u2 = TimeFunction(name="u2", grid=grid, time_order=2)
sf1 = SparseTimeFunction(name='sf1', grid=grid, npoint=1, nt=10)
const = Function(name="const", grid=grid, space_order=2)
# Deliberately inject into u1, rather than u1.forward, to create a WAR
eqn1 = Eq(u1.forward, u1 + sin(const))
eqn2 = sf1.inject(u1.forward, expr=sf1)
eqn3 = Eq(u2.forward, u2 - u1.dt2 + sin(const))
op = Operator([eqn1] + eqn2 + [eqn3])
trees = retrieve_iteration_tree(op)
# Check loop nest structure
assert all(i.dim is j for i, j in zip(trees[0], grid.dimensions)) # time invariant
assert trees[1].root.dim is grid.time_dim
assert all(trees[1].root.dim is tree.root.dim for tree in trees[1:])
@pytest.mark.parametrize('expr,expected', [
('2*fa[x] + fb[x]', '2*fa[x] + fb[x]'),
('fa[x]**2', 'fa[x]*fa[x]'),
('fa[x]**2 + fb[x]**3', 'fa[x]*fa[x] + fb[x]*fb[x]*fb[x]'),
('3*fa[x]**4', '3*(fa[x]*fa[x]*fa[x]*fa[x])'),
('fa[x]**2', 'fa[x]*fa[x]'),
('1/(fa[x]**2)', '1/(fa[x]*fa[x])'),
('1/(fb[x]**2 + 1)', '1/(fb[x]*fb[x] + 1)'),
('1/(fa[x] + fb[x])', '1/(fa[x] + fb[x])'),
('3*sin(fa[x])**2', '3*(sin(fa[x])*sin(fa[x]))'),
('fa[x]/(fb[x]**2)', 'fa[x]/((fb[x]*fb[x]))'),
('(fa[x]**0.5)**2', 'fa[x]'),
('fa[x]**s', 'fa[x]**s'),
('fa[x]**(-s)', 'fa[x]**(-s)'),
('-2/(s**2)', '-2/(s*s)'),
('-fa[x]', '-fa[x]'),
('Mul(SizeOf("char"), '
'-IndexedPointer(FieldFromPointer("size", fa._C_symbol), x), evaluate=False)',
'sizeof(char)*(-fa_vec->size[x])'),
('sqrt(fa[x]**4)', 'sqrt(fa[x]*fa[x]*fa[x]*fa[x])'),
('sqrt(fa[x])**2', 'fa[x]'),
('fa[x]**-2', '1/(fa[x]*fa[x])'),
('cos(fa[x]*fa[x])*cos(fa[x]*fa[x])', 'cos(fa[x]*fa[x])*cos(fa[x]*fa[x])'),
])
def test_pow_to_mul(expr, expected):
grid = Grid((4, 5))
x, y = grid.dimensions
s = Scalar(name='s') # noqa
fa = Function(name='fa', grid=grid, dimensions=(x,), shape=(4,)) # noqa
fb = Function(name='fb', grid=grid, dimensions=(x,), shape=(4,)) # noqa
assert str(pow_to_mul(eval(expr))) == expected
@pytest.mark.parametrize('expr,expected', [
('s - SizeOf("int")*fa[x]', 's - fa[x]*sizeof(int)'),
('foo(4*fa[x] + 4*fb[x])', 'foo(4*(fa[x] + fb[x]))'),
('floor(0.1*a + 0.1*fa[x])', 'floor(0.1*(a + fa[x]))'),
('floor(0.1*(a + fa[x]))', 'floor(0.1*(a + fa[x]))'),
])
def test_factorize(expr, expected):
grid = Grid((4, 5))
x, y = grid.dimensions
s = Scalar(name='s', dtype=np.float32) # noqa
a = Symbol(name='a', dtype=np.float32) # noqa
fa = Function(name='fa', grid=grid, dimensions=(x,), shape=(4,)) # noqa
fb = Function(name='fb', grid=grid, dimensions=(x,), shape=(4,)) # noqa
foo = lambda *args: DefFunction('foo', tuple(args)) # noqa
assert str(collect_nested(eval(expr))) == expected
@pytest.mark.parametrize('expr,expected,estimate', [
('Eq(t0, 3)', 0, False),
('Eq(t0, 4.5)', 0, False),
('Eq(t0, t1)', 0, False),
('Eq(t0, -t1)', 0, False),
('Eq(t0, -t1)', 0, True),
('Eq(t0, fa[x] + fb[x])', 1, False),
('Eq(t0, fa[x + 1] + fb[x - 1])', 1, False),
('Eq(t0, fa[fb[x+1]] + fa[x])', 1, False),
('Eq(t0, fa[fb[x+1]] + fc[x+2, y+1])', 1, False),
('Eq(t0, t1*t2)', 1, False),
('Eq(t0, 2.*t0*t1*t2)', 3, False),
('Eq(t0, cos(t1*t2))', 2, False),
('Eq(t0, (t1*t2)**0)', 0, False),
('Eq(t0, (t1*t2)**t1)', 2, False),
('Eq(t0, (t1*t2)**2)', 3, False), # SymPy distributes integer exponents in a Mul
('Eq(t0, 2.*t0*t1*t2 + t0*fa[x+1])', 5, False),
('Eq(t0, (2.*t0*t1*t2 + t0*fa[x+1])*3. - t0)', 7, False),
('[Eq(t0, (2.*t0*t1*t2 + t0*fa[x+1])*3. - t0), Eq(t0, cos(t1*t2))]', 9, False),
('Eq(t0, cos(fa*fb))', 101, True),
('Eq(t0, cos(fa[x]*fb[x]))', 101, True),
('Eq(t0, cos(t1*t2))', 101, True),
('Eq(t0, cos(c*c))', 101, True),
('Eq(t0, t1**3)', 2, True),
('Eq(t0, t1**4)', 3, True),
('Eq(t0, t2*t1**-1)', 6, True),
('Eq(t0, t1**t2)', 50, True),
('Eq(t0, 3.2/h_x)', 6, True), # seen as `3.2*(1/h_x)`, so counts as 2
('Eq(t0, 3.2/h_x*fa + 2.4/h_x*fb)', 15, True), # `pow(...constants...)` counts as 1
('Eq(t0, Abs(t1 + t2))', 2, False),
('Eq(t0, Abs(t1 + t2))', 6, True),
# Integer arithmetic should not count
('Eq(t0, INT(t1))', 0, True),
('Eq(t0, INT(t1*t0))', 1, True),
('Eq(t0, 2 + INT(t1*t0))', 1, True),
('Eq(t0, FLOAT(t1))', 0, True),
('Eq(t0, FLOAT(t1*t2*t3))', 2, True),
('Eq(t0, 1 + FLOAT(t1*t2*t3))', 3, True), # The 1 gets casted to float
('Eq(t0, 1 + t3)', 0, False),
('Eq(t0, 1 + t3)', 0, True),
('Eq(t0, t3 + t4)', 0, True),
('Eq(t0, 2*t3)', 0, True),
('Eq(t0, 2*t1)', 1, True),
('Eq(t0, -4 + INT(t3*t4 + t3))', 0, True),
# Custom routines and types
('Eq(t0, SizeOf("int"))', 0, True),
('Eq(t0, SizeOf("int"))', 0, False),
('Eq(t0, foo(k, 9))', 0, False),
('Eq(t0, foo(k, 9))', 0, True),
('Eq(t0, foo(k, t0 + 9))', 1, True),
('Eq(t0, foo(k, cos(t0 + 9)))', 101, True),
('Eq(t0, ffp)', 0, True),
('Eq(t0, ffp + 1.)', 1, True),
('Eq(t0, ffp + ffp)', 1, True),
# W/ StencilDimensions
('Eq(fb, fd.dx)', 10, False),
('Eq(fb, fd.dx)', 10, True),
('Eq(fb, fd.dx._evaluate(expand=False))', 10, False),
('Eq(fb, fd.dx.dy + fa.dx)', 65, False),
# Ensure redundancies aren't counted
('Eq(t0, fd.dx.dy + fa*fd.dx.dy)', 62, True),
])
def test_estimate_cost(expr, expected, estimate):
# Note: integer arithmetic isn't counted
grid = Grid(shape=(4, 4))
x, y = grid.dimensions # noqa
h_x = x.spacing # noqa
c = Constant(name='c') # noqa
t0 = Scalar(name='t0') # noqa
t1 = Scalar(name='t1') # noqa
t2 = Scalar(name='t2') # noqa
t3 = Scalar(name='t3', dtype=np.int32) # noqa
t4 = Scalar(name='t4', dtype=np.int32) # noqa
fa = Function(name='fa', grid=grid, shape=(4,), dimensions=(x,)) # noqa
fb = Function(name='fb', grid=grid, shape=(4,), dimensions=(x,)) # noqa
fc = Function(name='fc', grid=grid) # noqa
fd = Function(name='fd', grid=grid, space_order=4) # noqa
foo = lambda *args: DefFunction('foo', tuple(args)) # noqa
k = Keyword('k') # noqa
ffp = FieldFromPointer('size', fa._C_symbol) # noqa
assert estimate_cost(eval(expr), estimate) == expected
@pytest.mark.parametrize('opt', ['noop', 'advanced'])
def test_time_dependent_split(opt):
grid = Grid(shape=(10, 10))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2, save=3)
v = TimeFunction(name='v', grid=grid, time_order=2, space_order=0, save=3)
# The second equation needs a full loop over x/y for u then
# a full one over x.y for v
eq = [Eq(u.forward, 2 + grid.time_dim),
Eq(v.forward, u.forward.dx + u.forward.dy + 1)]
op = Operator(eq, opt=opt)
trees = retrieve_iteration_tree(op)
assert len(trees) == 2
op()
assert np.allclose(u.data[2, :, :], 3.0)
assert np.allclose(v.data[1, 1:-1, 1:-1], 1.0)
class TestLifting:
@pytest.mark.parametrize('exprs,expected', [
# none (different distance)
(['Eq(y.symbolic_max, g[0, x], implicit_dims=(t, x))',
'Inc(h1[0, 0], 1, implicit_dims=(t, x, y))'],
[6., 0., 0.]),
(['Eq(y.symbolic_max, g[0, x], implicit_dims=(t, x))',
'Eq(h1[0, y], y, implicit_dims=(t, x, y))'],
[0., 1., 2.]),
(['Eq(y.symbolic_min, g[0, x], implicit_dims=(t, x))',
'Eq(h1[0, y], 3 - y, implicit_dims=(t, x, y))'],
[3., 2., 1.]),
(['Eq(y.symbolic_min, g[0, x], implicit_dims=(t, x))',
'Eq(y.symbolic_max, g[0, x], implicit_dims=(t, x))',
'Eq(h1[0, y], y, implicit_dims=(t, x, y))'],
[0., 1., 2.]),
(['Eq(y.symbolic_min, g[0, 0], implicit_dims=(t, x))',
'Eq(y.symbolic_max, g[0, 2], implicit_dims=(t, x))',
'Eq(h1[0, y], y, implicit_dims=(t, x, y))'],
[0., 1., 2.]),
(['Eq(y.symbolic_min, g[0, x], implicit_dims=(t, x))',
'Eq(y.symbolic_max, g[0, 2], implicit_dims=(t, x))',
'Inc(h1[0, y], y, implicit_dims=(t, x, y))'],
[0., 2., 6.]),
(['Eq(y.symbolic_min, g[0, x], implicit_dims=(t, x))',
'Eq(y.symbolic_max, g[0, 2], implicit_dims=(t, x))',
'Inc(h1[0, x], y, implicit_dims=(t, x, y))'],
[3., 3., 2.]),
(['Eq(y.symbolic_min, g[0, 0], implicit_dims=(t, x))',
'Inc(h1[0, y], x, implicit_dims=(t, x, y))'],
[3., 3., 3.]),
(['Eq(y.symbolic_min, g[0, 2], implicit_dims=(t, x))',
'Inc(h1[0, x], y.symbolic_min, implicit_dims=(t, x))'],
[2., 2., 2.]),
(['Eq(y.symbolic_min, g[0, 2], implicit_dims=(t, x))',
'Inc(h1[0, x], y.symbolic_min, implicit_dims=(t, x, y))'],
[2., 2., 2.]),
(['Eq(y.symbolic_min, g[0, 2], implicit_dims=(t, x))',
'Eq(h1[0, x], y.symbolic_min, implicit_dims=(t, x))'],
[2., 2., 2.]),
(['Eq(y.symbolic_min, g[0, x], implicit_dims=(t, x))',
'Eq(y.symbolic_max, g[0, x]-1, implicit_dims=(t, x))',
'Eq(h1[0, y], y, implicit_dims=(t, x, y))'],
[0., 0., 0.])
])
def test_edge_cases(self, exprs, expected):
t, x, y = dimensions('t x y')
g = TimeFunction(name='g', shape=(1, 3), dimensions=(t, x),
time_order=0, dtype=np.int32)
g.data[0, :] = [0, 1, 2]
h1 = TimeFunction(name='h1', shape=(1, 3), dimensions=(t, y), time_order=0)
h1.data[0, :] = 0
# List comprehension would need explicit locals/globals mappings to eval
for i, e in enumerate(list(exprs)):
exprs[i] = eval(e)
op = Operator(exprs)
op.apply()
assert np.all(h1.data == expected)
@pytest.mark.parametrize('exprs,expected,visit', [
(['Eq(f, f + g*2, implicit_dims=(time, x, y))',
'Eq(u, (f + f[y+1])*g)'],
['txy', 'txy'], 'txyy'),
])
def test_contracted(self, exprs, expected, visit):
"""
Test that in situations such as
for i
for x
r = f(a[x])
the `r` statement isn't lifted outside of `i`, since we're not recording
each of the computed `x` value (IOW, we're writing to `r` rather than `r[x]`).
"""
grid = Grid(shape=(3, 3), dtype=np.int32)
x, y = grid.dimensions
time = grid.time_dim # noqa
f = Function(name='f', grid=grid, shape=(3,), dimensions=(y,)) # noqa
g = Function(name='g', grid=grid) # noqa
u = TimeFunction(name='u', grid=grid, time_order=0) # noqa
# List comprehension would need explicit locals/globals mappings to eval
for i, e in enumerate(list(exprs)):
exprs[i] = eval(e)
op = Operator(exprs)
trees = retrieve_iteration_tree(op)
iters = FindNodes(Iteration).visit(op)
assert len(trees) == len(expected)
# mapper just makes it quicker to write out the test parametrization
mapper = {'time': 't'}
assert ["".join(mapper.get(i.dim.name, i.dim.name) for i in j)
for j in trees] == expected
assert "".join(mapper.get(i.dim.name, i.dim.name) for i in iters) == visit
def test_implicit_only(self):
grid = Grid(shape=(5, 5))
time = grid.time_dim
u = TimeFunction(name="u", grid=grid, time_order=1)
idimeq = Eq(Symbol('s'), 1, implicit_dims=time)
op = Operator([Eq(u.forward, u + 1.), idimeq])
trees = retrieve_iteration_tree(op)
assert len(trees) == 2
assert_structure(op, ['t,x,y', 't'], 'txy')
assert trees[1].dimensions == [time]
def test_scalar_cond(self):
grid = Grid(shape=(5, 5))
time = grid.time_dim
u = TimeFunction(name="u", grid=grid, time_order=1)
bt = ConditionalDimension(name="bt", parent=time, condition=Ge(time, 2))
W = (1 - exp(-(time - 5)/5))
eqns = [Eq(u.forward, 1),
Eq(u.forward, u.forward * (1 - W) + W * u, implicit_dims=bt)]
op = Operator(eqns)
trees = retrieve_iteration_tree(op)
assert len(trees) == 3
assert_structure(op, ['t', 't,x,y', 't,x,y'], 'txyxy')
assert trees[0].dimensions == [time]
class TestAliases:
@pytest.mark.parametrize('exprs,expected', [
# none (different distance)
(['Eq(t0, fa[x] + fb[x])', 'Eq(t1, fa[x+1] + fb[x])'],
[]),
# none (different dimension)
(['Eq(t0, fa[x] + fb[x])', 'Eq(t1, fa[x] + fb[y])'],
[]),
# none (different operation)
(['Eq(t0, fa[x] + fb[x])', 'Eq(t1, fa[x] - fb[x])'],
[]),
# simple
(['Eq(t0, fa[x] + fb[x])', 'Eq(t1, fa[x+1] + fb[x+1])',
'Eq(t2, fa[x+2] + fb[x+2])'],
['fa[x+1] + fb[x+1]']),
# 2D simple
(['Eq(t0, fc[x,y] + fd[x,y])', 'Eq(t1, fc[x+1,y+1] + fd[x+1,y+1])'],
['fc[x+1,y+1] + fd[x+1,y+1]']),
# 2D with stride
(['Eq(t0, fc[x,y] + fd[x+1,y+2])', 'Eq(t1, fc[x+1,y+1] + fd[x+2,y+3])'],
['fc[x+1,y+1] + fd[x+2,y+3]']),
# 2D with subdimensions
(['Eq(t0, fc[xi,yi] + fd[xi+1,yi+2])',
'Eq(t1, fc[xi+1,yi+1] + fd[xi+2,yi+3])'],
['fc[xi+1,yi+1] + fd[xi+2,yi+3]']),
# 2D with constant access
(['Eq(t0, fc[x,y]*fc[x,0] + fd[x,y])',
'Eq(t1, fc[x+1,y+1]*fc[x+1,0] + fd[x+1,y+1])'],
['fc[x+1,y+1]*fc[x+1,0] + fd[x+1,y+1]']),
# 2D with multiple, non-zero, constant accesses
(['Eq(t0, fc[x,y]*fc[x,0] + fd[x,y]*fc[x,1])',
'Eq(t1, fc[x+1,y+1]*fc[x+1,0] + fd[x+1,y+1]*fc[x+1,1])'],
['fc[x+1,0]*fc[x+1,y+1] + fc[x+1,1]*fd[x+1,y+1]']),
# 2D with different shapes
(['Eq(t0, fc[x,y]*fa[x] + fd[x,y])',
'Eq(t1, fc[x+1,y+1]*fa[x+1] + fd[x+1,y+1])'],
['fc[x+1,y+1]*fa[x+1] + fd[x+1,y+1]']),
# complex (two 2D aliases with stride inducing relaxation)
(['Eq(t0, fc[x,y] + fd[x+1,y+2])',
'Eq(t1, fc[x+1,y+1] + fd[x+2,y+3])',
'Eq(t2, fc[x+1,y+1]*3. + fd[x+2,y+2])',
'Eq(t3, fc[x+2,y+2]*3. + fd[x+3,y+3])'],
['fc[x+1,y+1] + fd[x+2,y+3]', '3.*fc[x+2,y+2] + fd[x+3,y+3]']),
])
def test_collection(self, exprs, expected):
"""
Unit test for the detection and collection of aliases out of a series
of input expressions.
"""
grid = Grid(shape=(4, 4))
x, y = grid.dimensions # noqa
xi, yi = grid.interior.dimensions # noqa
t0 = Scalar(name='t0') # noqa
t1 = Scalar(name='t1') # noqa
t2 = Scalar(name='t2') # noqa
t3 = Scalar(name='t3') # noqa
fa = Function(name='fa', grid=grid, shape=(4,), dimensions=(x,), space_order=4) # noqa
fb = Function(name='fb', grid=grid, shape=(4,), dimensions=(x,), space_order=4) # noqa
fc = Function(name='fc', grid=grid, space_order=4) # noqa
fd = Function(name='fd', grid=grid, space_order=4) # noqa
# List/dict comprehension would need explicit locals/globals mappings to eval
for i, e in enumerate(list(exprs)):
exprs[i] = DummyEq(indexify(eval(e).evaluate))
for i, e in enumerate(list(expected)):
expected[i] = eval(e)
extracted = {i.rhs: i.lhs for i in exprs}
ispace = exprs[0].ispace
aliases = collect(extracted, ispace, False)
aliases.filter(lambda a: a.score > 0)
assert len(aliases) == len(expected)
assert all(i.pivot in expected for i in aliases)
@pytest.mark.parametrize('rotate', [False, True])
def test_full_shape(self, rotate):
"""
Check the shape of the Array used to store an aliasing expression.
The shape is impacted by loop blocking, which reduces the required
write-to space.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name="u1", grid=grid, space_order=3)
u.data_with_halo[:] = 0.5
u1.data_with_halo[:] = 0.5
# Leads to 3D aliases
eqn = Eq(u.forward, _R(_R(u[t, x, y, z] + u[t, x+1, y+1, z+1])*3. +
_R(u[t, x+2, y+2, z+2] + u[t, x+3, y+3, z+3])*3.) + 1.)
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
xs, ys, zs = get_params(op1, 'x0_blk0_size', 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 1
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 1
check_array(arrays[0], ((1, 1), (1, 1), (1, 1)), (xs+2, ys+2, zs+2), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
@pytest.mark.parametrize('rotate', [False, True])
def test_contracted_shape(self, rotate):
"""
Conceptually like `test_full_shape`, but the Operator used in this
test leads to contracted Arrays (2D instead of 3D).
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
u.data_with_halo[:] = 0.5
u1.data_with_halo[:] = 0.5
# Leads to 2D aliases
eqn = Eq(u.forward, _R(_R(u[t, x, y, z] + u[t, x, y+1, z+1])*3. +
_R(u[t, x, y+2, z+2] + u[t, x, y+3, z+3])*3.) + 1)
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
ys, zs = get_params(op1, 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 1
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 1
check_array(arrays[0], ((1, 1), (1, 1)), (ys+2, zs+2), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
@pytest.mark.parametrize('rotate', [False, True])
def test_uncontracted_shape(self, rotate):
"""
Like `test_contracted_shape`, but the potential contraction is
now along the innermost Dimension, which causes falling back to
3D Arrays.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
u.data_with_halo[:] = 0.5
u1.data_with_halo[:] = 0.5
# Leads to 3D aliases
eqn = Eq(u.forward, _R(_R(u[t, x, y, z] + u[t, x+1, y+1, z])*3. +
_R(u[t, x+2, y+2, z] + u[t, x+3, y+3, z])*3.) + 1)
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
xs, ys, zs = get_params(op1, 'x0_blk0_size', 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 1
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 1
check_array(arrays[0], ((1, 1), (1, 1), (0, 0)), (xs+2, ys+2, zs), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
def test_uncontracted_shape_invariants(self):
"""
Like `test_uncontracted_shape`, but now with some (outer-)Dimension-invariant
aliasing expressions.
"""
grid = Grid(shape=(6, 6, 6))
x, y, z = grid.dimensions
f = Function(name='f', grid=grid)
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
f.data_with_halo[:] =\
np.linspace(-1, 1, f.data_with_halo.size).reshape(*f.shape_with_halo)
u.data_with_halo[:] = 0.5
u1.data_with_halo[:] = 0.5
def func(f):
return sqrt(f**2 + 1.)
# Leads to 3D aliases despite the potential contraction along x and y
eqn = Eq(u.forward, u*func(f) + u*func(f[x, y, z-1]))
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True}))
# Check code generation
xs, ys, zs = get_params(op1, 'x_size', 'y_size', 'z_size')
arrays = [i for i in FindSymbols().visit(op1) if i.is_Array]
assert len(arrays) == 1
check_array(arrays[0], ((0, 0), (0, 0), (1, 0)), (xs, ys, zs+1))
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.allclose(u.data, u1.data, rtol=10e-7)
@pytest.mark.parametrize('rotate', [False, True])
def test_full_shape_w_subdims(self, rotate):
"""
Like `test_full_shape`, but SubDomains (and therefore SubDimensions) are used.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
u.data_with_halo[:] = 0.5
u1.data_with_halo[:] = 0.5
# Leads to 3D aliases
eqn = Eq(u.forward, _R(_R(u[t, x, y, z] + u[t, x+1, y+1, z+1])*3. +
_R(u[t, x+2, y+2, z+2] + u[t, x+3, y+3, z+3])*3.) + 1,
subdomain=grid.interior)
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'ix0_blk0'})
xs, ys, zs = get_params(op1, 'ix0_blk0_size', 'iy0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['ix0_blk0']) if i.is_Array]
assert len(arrays) == 1
assert len(FindNodes(VExpanded).visit(pbs['ix0_blk0'])) == 1
check_array(arrays[0], ((1, 1), (1, 1), (1, 1)), (xs+2, ys+2, zs+2), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
@pytest.mark.parametrize('rotate', [False, True])
def test_mixed_shapes(self, rotate):
"""
Test that if running with ``opt=(..., {'min-storage': True})``, then,
when possible, aliasing expressions are assigned to (n-k)D Arrays (k>0)
rather than nD Arrays.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
d = Dimension(name='d')
c = Function(name='c', grid=grid, shape=(2, 3), dimensions=(d, z))
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u', grid=grid, space_order=3)
c.data_with_halo[:] = 1.
u.data_with_halo[:] = 1.5
u1.data_with_halo[:] = 1.5
# Leads to 2D and 3D aliases
eqn = Eq(u.forward,
_R(_R(c[0, z]*u[t, x+1, y+1, z] + c[1, z+1]*u[t, x+1, y+1, z+1]) +
_R(c[0, z]*u[t, x+2, y+2, z] + c[1, z+1]*u[t, x+2, y+2, z+1]) +
_R(u[t, x, y+1, z+1] + u[t, x+1, y+1, z+1]*3.) +
_R(u[t, x, y+3, z+1] + u[t, x+1, y+3, z+1]*3.)))
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced',
{'openmp': True, 'min-storage': True,
'cire-mingain': 0, 'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
xs, ys, zs = get_params(op1, 'x0_blk0_size', 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 2
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 2
check_array(arrays[0], ((1, 0), (1, 0), (0, 0)), (xs+1, ys+1, zs), rotate)
check_array(arrays[1], ((1, 1), (0, 0)), (ys+2, zs), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
def test_min_storage_in_isolation(self):
"""
Test that if running with ``opt=('cire-sops', {'min-storage': True})``,
then, when possible, aliasing expressions are assigned to (n-k)D Arrays (k>0)
rather than nD Arrays.
"""
grid = Grid(shape=(8, 8, 8))
x, y, z = grid.dimensions
u = TimeFunction(name='u', grid=grid, space_order=4)
u1 = TimeFunction(name="u1", grid=grid, space_order=4)
u2 = TimeFunction(name="u2", grid=grid, space_order=4)
u.data_with_halo[:] = 1.42
u1.data_with_halo[:] = 1.42
u2.data_with_halo[:] = 1.42
eqn = Eq(u.forward, u.dy.dy + u.dx.dx)
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('cire-sops', 'simd', {'openmp': True,
'min-storage': True}))
op2 = Operator(eqn, opt=('advanced-fsg', {'openmp': True}))
# NOTE: `op1` uses the `simd` pass as well simply so that the
# parallelization heuristics, seeing that the innermost Iteration was
# vectorized, stick to parallelizing the outermost loop instead of
# the two inner loops (which would normally be preferred due to collapse(2))
# Check code generation
# `min-storage` leads to one 2D and one 3D Arrays
xs, ys, zs = get_params(op1, 'x_size', 'y_size', 'z_size')
arrays = [i for i in FindSymbols().visit(op1) if i.is_Array]
assert len(arrays) == 2
assert len(FindNodes(VExpanded).visit(op1)) == 1
check_array(arrays[0], ((2, 2), (0, 0), (0, 0)), (xs+4, ys, zs))
check_array(arrays[1], ((2, 2), (0, 0)), (ys+4, zs))
# Check that `advanced-fsg` + `min-storage` is incompatible
try:
Operator(eqn, opt=('advanced-fsg', {'openmp': True, 'min-storage': True}))
except InvalidOperator:
assert True
except:
assert False
# Check that `cire-rotate=True` has no effect in this code has there's
# no blocking
op3 = Operator(eqn, opt=('cire-sops', 'simd', {'openmp': True,
'min-storage': True,
'cire-rotate': True}))
assert str(op3) == str(op1)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
op2(time_M=1, u=u2)
expected = norm(u)
assert np.isclose(expected, norm(u1), rtol=1e-5)
assert np.isclose(expected, norm(u2), rtol=1e-5)
def test_min_storage_issue_1506(self):
grid = Grid(shape=(10, 10))
u1 = TimeFunction(name='u1', grid=grid, time_order=2, space_order=4, save=10)
u2 = TimeFunction(name='u2', grid=grid, time_order=2, space_order=4, save=10)
v1 = TimeFunction(name='v1', grid=grid, time_order=2, space_order=4, save=None)
v2 = TimeFunction(name='v2', grid=grid, time_order=2, space_order=4, save=None)
eqns = [Eq(u1.forward, (u1+u2).laplace),
Eq(u2.forward, (u1-u2).laplace),
Eq(v1.forward, (v1+v2).laplace + u1.dt2),
Eq(v2.forward, (v1-v2).laplace + u2.dt2)]
op0 = Operator(eqns, opt=('advanced', {'min-storage': False, 'cire-mingain': 1}))
op1 = Operator(eqns, opt=('advanced', {'min-storage': True, 'cire-mingain': 1}))
# Check code generation
assert len([i for i in FindSymbols().visit(op0) if i.is_Array]) == 4
# In particular, check that `min-storage` works, but has "no effect" in this
# example, in the sense that it produces the same code as default
assert str(op0) == str(op1)
@pytest.mark.parametrize('rotate', [False, True])
def test_mixed_shapes_v2_w_subdims(self, rotate):
"""
Analogous `test_mixed_shapes`, but with different sets of aliasing expressions.
Also, uses SubDimensions.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
d = Dimension(name='d')
c = Function(name='c', grid=grid, shape=(2, 3), dimensions=(d, z))
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
c.data_with_halo[:] = 1.
u.data_with_halo[:] = 1.5
u1.data_with_halo[:] = 1.5
# Leads to 2D and 3D aliases
eqn = Eq(u.forward,
_R(_R(c[0, z]*u[t, x+1, y-1, z] + c[1, z+1]*u[t, x+1, y-1, z+1]) +
_R(c[0, z]*u[t, x+2, y-2, z] + c[1, z+1]*u[t, x+2, y-2, z+1]) +
_R(u[t, x, y+1, z+1] + u[t, x+1, y+1, z+1])*3. +
_R(u[t, x, y+3, z+2] + u[t, x+1, y+3, z+2])*3.),
subdomain=grid.interior)
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced',
{'openmp': True, 'min-storage': True,
'cire-mingain': 0, 'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'ix0_blk0'})
xs, ys, zs = get_params(op1, 'ix0_blk0_size', 'iy0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['ix0_blk0']) if i.is_Array]
assert len(arrays) == 2
assert len(FindNodes(VExpanded).visit(pbs['ix0_blk0'])) == 2
check_array(arrays[0], ((1, 0), (1, 0), (0, 0)), (xs+1, ys+1, zs), rotate)
check_array(arrays[1], ((1, 1), (1, 0)), (ys+2, zs+1), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
@pytest.mark.parametrize('rotate', [False, True])
def test_in_bounds_w_shift(self, rotate):
"""
Make sure the iteration space and indexing of the aliasing expressions
are shifted such that no out-of-bounds accesses are generated.
"""
grid = Grid(shape=(5, 5, 5))
x, y, z = grid.dimensions
t = grid.stepping_dim
d = Dimension(name='d')
c = Function(name='c', grid=grid, shape=(2, 5), dimensions=(d, z))
u = TimeFunction(name='u', grid=grid, space_order=4)
u1 = TimeFunction(name='u1', grid=grid, space_order=4)
c.data_with_halo[:] = 1.
u.data_with_halo[:] = 1.5
u1.data_with_halo[:] = 1.5
# Leads to 3D aliases
eqn = Eq(u.forward,
_R(_R(c[0, z]*u[t, x+1, y, z] + c[1, z+1]*u[t, x+1, y, z+1]) +
_R(c[0, z]*u[t, x+2, y+2, z] + c[1, z+1]*u[t, x+2, y+2, z+1]) +
_R(u[t, x, y-4, z+1] + u[t, x+1, y-4, z+1])*3. +
_R(u[t, x-1, y-3, z+1] + u[t, x, y-3, z+1])*3.))
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
xs, ys, zs = get_params(op1, 'x0_blk0_size', 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 2
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 2
check_array(arrays[0], ((1, 0), (1, 1), (0, 0)), (xs+1, ys+2, zs), rotate)
check_array(arrays[1], ((1, 0), (1, 1), (0, 0)), (xs+1, ys+2, zs), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
@pytest.mark.parametrize('rotate', [False, True])
def test_constant_symbolic_distance(self, rotate):
"""
Test the detection of aliasing expressions in the case of a
constant symbolic distance, such as `a[t, x_m+2, y, z]` when the
Dimensions are `(t, x, y, z)`; here, `x_m + 2` is a constant
symbolic access.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
x_m = x.symbolic_min
y_m = y.symbolic_min
t = grid.stepping_dim
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
u.data_with_halo[:] = 0.5
u1.data_with_halo[:] = 0.5
# Leads to 2D aliases
eqn = Eq(u.forward,
_R(_R(u[t, x_m+2, y, z] + u[t, x_m+3, y+1, z+1])*3. +
_R(u[t, x_m+2, y+2, z+2] + u[t, x_m+3, y+3, z+3])*3. + 1 +
_R(u[t, x+2, y+2, z+2] + u[t, x+3, y+3, z+3])*3. + # N, not an alias
_R(u[t, x_m+1, y+2, z+2] + u[t, x_m+1, y+3, z+3])*3. + # Y, redundant
_R(u[t, x+2, y_m+3, z+2] + u[t, x+3, y_m+3, z+3])*3. +
_R(u[t, x+1, y_m+3, z+1] + u[t, x+2, y_m+3, z+2])*3.))
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
xs, ys, zs = get_params(op1, 'x0_blk0_size', 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 3
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 3
check_array(arrays[0], ((1, 0), (1, 0)), (xs+1, zs+1), rotate)
check_array(arrays[1], ((1, 1), (1, 1)), (ys+2, zs+2), rotate)
check_array(arrays[2], ((1, 1), (1, 1)), (ys+2, zs+2), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
@pytest.mark.parametrize('rotate', [False, True])
def test_outlier_with_long_diameter(self, rotate):
"""
Test that if there is a potentially aliasing expression, say A, with
excessively long diameter (that is, such that it cannot safely be
computed in a loop with other aliasing expressions), then A is ignored
and the other aliasing expressions are captured correctly.
"""
grid = Grid(shape=(3, 3, 3))
x, y, z = grid.dimensions
t = grid.stepping_dim
u = TimeFunction(name='u', grid=grid, space_order=3)
u1 = TimeFunction(name='u1', grid=grid, space_order=3)
u.data_with_halo[:] = 1.5
u1.data_with_halo[:] = 1.5
# Leads to 3D aliases
# Note: the outlier already touches the halo extremes, so it cannot
# be computed in a loop with extra y-iterations, hence it must be ignored
# while not compromising the detection of the two aliasing sub-expressions
eqn = Eq(u.forward, _R(_R(u[t, x, y+1, z+1] + u[t, x+1, y+1, z+1])*3. +
_R(u[t, x, y-3, z+1] + u[t, x+1, y+3, z+1])*3. + # outlier
_R(u[t, x, y+3, z+2] + u[t, x+1, y+3, z+2])*3.))
op0 = Operator(eqn, opt=('noop', {'openmp': True}))
op1 = Operator(eqn, opt=('advanced', {'openmp': True, 'cire-mingain': 0,
'cire-rotate': rotate}))
# Check code generation
bns, pbs = assert_blocking(op1, {'x0_blk0'})
ys, zs = get_params(op1, 'y0_blk0_size', 'z_size')
arrays = [i for i in FindSymbols().visit(bns['x0_blk0']) if i.is_Array]
assert len(arrays) == 1
assert len(FindNodes(VExpanded).visit(pbs['x0_blk0'])) == 1
check_array(arrays[0], ((1, 1), (1, 0)), (ys+2, zs+1), rotate)
# Check numerical output
op0(time_M=1)
op1(time_M=1, u=u1)
assert np.all(u.data == u1.data)
def test_take_largest_derivative(self):
"""
Check that CIRE is able to automatically schedule the largest degree
derivative in a case with many nested derivatives.
"""
grid = Grid(shape=(4, 4, 4))
f = Function(name='f', grid=grid)
u = TimeFunction(name='u', grid=grid, space_order=2)
eq = Eq(u.forward, f**2*sin(f)*u.dy.dy.dy.dy.dy)
op = Operator(eq, opt=('cire-sops'))
assert op._profiler._sections['section0'].sops == 84
assert len([i for i in FindSymbols().visit(op) if i.is_Array]) == 1
def test_nested_invariants_v1(self):
"""
Check that nested aliases are optimized away.
"""
grid = Grid(shape=(3, 3))
x, y = grid.dimensions # noqa
u = TimeFunction(name='u', grid=grid)
g = Function(name='g', grid=grid)
op = Operator(Eq(u.forward, u + sin(cos(g)) + sin(cos(g[x+1, y+1]))))
# We expect one temporary Array: `r0 = sin(cos(g))`
arrays = [i for i in FindSymbols().visit(op) if i.is_Array]
assert len(arrays) == 1
assert all(i._mem_heap and not i._mem_external for i in arrays)
def test_nested_invariants_v2(self):
"""
Check that nested aliases are optimized away.
"""
grid = Grid(shape=(3, 3))
x, y = grid.dimensions # noqa
h_x, h_y = grid.spacing_symbols
u = TimeFunction(name='u', grid=grid)
g = Function(name='g', grid=grid)
op = Operator(Eq(u.forward, u + (1 + cos(g))/h_x + (1 + cos(g[x+1, y+1]))/h_y))
# We expect one temporary Array: `r0 = cos(g)`
arrays = [i for i in FindSymbols().visit(op) if i.is_Array]
assert len(arrays) == 1
assert all(i._mem_heap and not i._mem_external for i in arrays)
def test_nested_invariants_v3(self):
"""
Check that nested aliases are optimized away.
"""
grid = Grid(shape=(3, 3))
x, y = grid.dimensions # noqa
h_x, h_y = grid.spacing_symbols
u = TimeFunction(name='u', grid=grid)
f = Function(name='f', grid=grid)
g = Function(name='g', grid=grid)
op = Operator(Eq(u.forward, (u*sin(f) + 1)*cos(g)*sin(g)))
# We expect two temporary Arrays: `r0 = sin(f)` and `r1 = cos(g)*sin(g)`
arrays = [i for i in FindSymbols().visit(op) if i.is_Array]
assert len(arrays) == 2
assert all(i._mem_heap and not i._mem_external for i in arrays)
# Also make sure the inner `sin` has been correctly replaced
exprs = FindNodes(Expression).visit(op)
assert len(exprs[-1].expr.find(sin)) == 0
def test_nested_invariant_v4(self):
"""
Check that nested aliases are optimized away.