-
Notifications
You must be signed in to change notification settings - Fork 294
/
Copy pathBridge_in_graph.java
139 lines (119 loc) · 4.11 KB
/
Bridge_in_graph.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import java.io.*;
import java.util.*;
import java.util.LinkedList;
// This class represents a undirected graph using adjacency list
// representation
class Graph
{
private int V; // No. of vertices
// Array of lists for Adjacency List Representation
private LinkedList<Integer> adj[];
int time = 0;
static final int NIL = -1;
// Constructor
Graph(int v)
{
V = v;
adj = new LinkedList[v];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList();
}
// Function to add an edge into the graph
void addEdge(int v, int w)
{
adj[v].add(w); // Add w to v's list.
adj[w].add(v); //Add v to w's list
}
// A recursive function that finds and prints bridges
// using DFS traversal
// u --> The vertex to be visited next
// visited[] --> keeps tract of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
void bridgeUtil(int u, boolean visited[], int disc[],
int low[], int parent[])
{
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices aadjacent to this
Iterator<Integer> i = adj[u].iterator();
while (i.hasNext())
{
int v = i.next(); // v is current adjacent of u
// If v is not visited yet, then make it a child
// of u in DFS tree and recur for it.
// If v is not visited yet, then recur for it
if (!visited[v])
{
parent[v] = u;
bridgeUtil(v, visited, disc, low, parent);
// Check if the subtree rooted with v has a
// connection to one of the ancestors of u
low[u] = Math.min(low[u], low[v]);
// If the lowest vertex reachable from subtree
// under v is below u in DFS tree, then u-v is
// a bridge
if (low[v] > disc[u])
System.out.println(u+" "+v);
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u] = Math.min(low[u], disc[v]);
}
}
// DFS based function to find all bridges. It uses recursive
// function bridgeUtil()
void bridge()
{
// Mark all the vertices as not visited
boolean visited[] = new boolean[V];
int disc[] = new int[V];
int low[] = new int[V];
int parent[] = new int[V];
// Initialize parent and visited, and ap(articulation point)
// arrays
for (int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false;
}
// Call the recursive helper function to find Bridges
// in DFS tree rooted with vertex 'i'
for (int i = 0; i < V; i++)
if (visited[i] == false)
bridgeUtil(i, visited, disc, low, parent);
}
public static void main(String args[])
{
// Create graphs given in above diagrams
System.out.println("Bridges in first graph ");
Graph g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.bridge();
System.out.println();
System.out.println("Bridges in Second graph");
Graph g2 = new Graph(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.bridge();
System.out.println();
System.out.println("Bridges in Third graph ");
Graph g3 = new Graph(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.bridge();
}
}