-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
161 lines (137 loc) · 6.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from flask import Flask, render_template,request,flash,redirect,url_for,send_file
from algorithms import *
import time
import matplotlib
import io
import base64
from random_array import generate_random_array
import matplotlib.pyplot
from io import BytesIO
matplotlib.use('agg') # Use the 'agg' backend (non-interactive) for Matplotlib
#selection sort, insertion sort, and merge sort
app = Flask(__name__)
app.secret_key = 'sort_and_sort' # Required for flash messages
# Function to measure execution time
def measure_execution_time(algorithm, arr, iterations=10):
total_time = 0
for _ in range(iterations):
arr_copy = arr.copy()
start_time = time.perf_counter()
sorted_arr=algorithm(arr_copy)
end_time = time.perf_counter()
total_time += end_time - start_time
return (total_time / iterations),sorted_arr
@app.route('/download-text', methods=['POST'])
def download_retrieved_text():
retrieved_text = request.form['results']
return send_file(BytesIO(retrieved_text.encode()), as_attachment=True, download_name='results.txt', mimetype='text/plain')
# Plot function
def plot_line_graph(input_sizes, execution_times, title):
# Plot function
fig, ax = matplotlib.pyplot.subplots(figsize=(10, 8))
for alg_name, times in execution_times.items():
ax.plot(input_sizes, times, label=alg_name, marker='o')
ax.set_xlabel('Input Size')
ax.set_ylabel('Execution Time (seconds)')
ax.set_title(title)
ax.legend()
ax.grid(True)
buf = io.BytesIO()
matplotlib.pyplot.savefig(buf, format='png')
buf.seek(0)
plot_url = base64.b64encode(buf.getvalue()).decode('utf8')
matplotlib.pyplot.close(fig)
return plot_url
def plot_bar_graph(execution_times):
# Plot the execution times
fig, ax = matplotlib.pyplot.subplots(figsize=(10, 8))
ax.bar(execution_times.keys(), execution_times.values(), width=0.4)
ax.set_title("Execution Time Comparison")
ax.set_xlabel("Algorithm")
ax.set_ylabel("Execution Time (seconds)")
matplotlib.pyplot.xticks(rotation=45, ha='right') # Rotate x-axis labels for better readability
# Save the plot to a bytes buffer
buf = io.BytesIO()
matplotlib.pyplot.savefig(buf, format='png')
buf.seek(0)
plot_url = base64.b64encode(buf.getvalue()).decode('utf8')
matplotlib.pyplot.close(fig)
return plot_url
@app.route('/view-results', methods=['POST'])
def view_results():
results = request.form.get('results')
return render_template('view_results.html', results=results)
# Route for home page
@app.route('/', methods=['GET', 'POST'])
def home():
if request.method == 'POST':
iterations=1
input_array_sizes=None
input_array = None
#validations
execution_type = request.form.get('execution_type')
if execution_type=='array':
if 'array' in request.form and request.form['array']:
input_array = list(map(int, request.form['array'].split(',')))
provided_input="array provided : "+str(input_array)
elif 'array_size' in request.form and request.form['array_size']:
size=(int(request.form['array_size']))
input_array= generate_random_array(size)
provided_input=f"random array generated of length : {len(input_array)}"
elif 'file' in request.files and request.files['file']:
file = request.files['file']
file_content = file.read().decode('utf-8')
input_array = list(map(int, file_content.strip().split(',')))
provided_input=f"file uploaded containing array of length : {len(input_array)}"
else:
flash("Please provide an input array or upload a file or choose array_sizes",'danger')
return redirect(url_for('home'))
if execution_type=='comparison':#validation for input arrays
if 'input_array_sizes' in request.form and request.form['input_array_sizes']:
input_array_sizes = list(map(int, request.form['input_array_sizes'].split(',')))
input_array_sizes=sorted(input_array_sizes)
provided_input="multiple random generated array of sizes "+str(input_array_sizes)
else:
flash('Please fill the input sizes', 'danger')
return redirect(url_for('home'))
if 'iterations' in request.form and request.form['iterations']:
iterations=(int(request.form['iterations']))
selected_algorithms = request.form.getlist('algorithms')
algorithms = {
'merge_sort': merge_sort,
'insertion_sort': insertion_sort,
'selection_sort': selection_sort,
'bubble_sort': bubble_sort,
'quick_sort': quick_sort
}
# Define input sizes
execution_times = {}
algorithms_selected={}
for name in selected_algorithms:
algorithms_selected[name] = algorithms[name]
results=""
if input_array is not None:
results+=f"\n______________________________input array______________________________\n{input_array}\n"
for alg_name,alg_func in algorithms_selected.items():
avg_time,sorted_arr = measure_execution_time(alg_func, input_array,iterations)
execution_times[alg_name] = avg_time
results+=f"\n**************** {alg_name} - execution time :{avg_time} *******************\n{sorted_arr}\n"
plot_url=plot_bar_graph(execution_times)
elif input_array_sizes is not None:
execution_times = {alg_name: [] for alg_name in algorithms_selected.keys()}
for size in input_array_sizes:
generated_array = generate_random_array(size)
results+=f"\n______________________________Generated Array Of Size : {size}______________________________\n{generated_array}\n"
for alg_name, alg_func in algorithms_selected.items():
avg_time,sorted_arr = measure_execution_time(alg_func, generated_array,iterations)
execution_times[alg_name].append(avg_time)
results+=f"\n**************** {alg_name} - execution time :{avg_time} *******************\n{sorted_arr}\n"
results+="\n\n"
# Plotting
plot_url=plot_line_graph(input_array_sizes, execution_times, "Algorithm Performance vs Input Size")
return render_template('result.html', plot_url=plot_url, execution_times=execution_times,results=results, input_array=provided_input,iterations=iterations)
return render_template('index.html')
def run_flask_app():
app.run(host='0.0.0.0',debug=True,)
if __name__ == '__main__':
run_flask_app()