-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathzmod.c
2276 lines (2107 loc) · 73.5 KB
/
zmod.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* zmod - modulo arithmetic routines
*
* Copyright (C) 1999-2007,2021-2023 David I. Bell, Landon Curt Noll and Ernest Bowen
*
* Primary author: David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1991/05/22 23:03:55
* File existed as early as: 1991
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* Routines to do modulo arithmetic both normally and also using the REDC
* algorithm given by Peter L. Montgomery in Mathematics of Computation,
* volume 44, number 170 (April, 1985). For multiple multiplies using
* the same large modulus, the REDC algorithm avoids the usual division
* by the modulus, instead replacing it with two multiplies or else a
* special algorithm. When these two multiplies or the special algorithm
* are faster then the division, then the REDC algorithm is better.
*/
#include "alloc.h"
#include "config.h"
#include "zmath.h"
#include "errtbl.h"
#include "banned.h" /* include after system header <> includes */
#define POWBITS 4 /* bits for power chunks (must divide BASEB) */
#define POWNUMS (1<<POWBITS) /* number of powers needed in table */
S_FUNC void zmod5(ZVALUE *zp);
S_FUNC void zmod6(ZVALUE z1, ZVALUE *res);
S_FUNC void zredcmodinv(ZVALUE z1, ZVALUE *res);
STATIC REDC *powermodredc = NULL; /* REDC info for raising to power */
bool havelastmod = false;
STATIC ZVALUE lastmod[1];
STATIC ZVALUE lastmodinv[1];
/*
* Square a number and then mod the result with a second number.
* The number to be squared can be negative or out of modulo range.
* The result will be in the range 0 to the modulus - 1.
*
* given:
* z1 number to be squared
* z2 number to take mod with
* res result
*/
void
zsquaremod(ZVALUE z1, ZVALUE z2, ZVALUE *res)
{
ZVALUE tmp;
FULL prod;
FULL digit;
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
if (ziszero(z2) || zisneg(z2)) {
math_error("Mod of non-positive integer");
not_reached();
}
if (ziszero(z1) || zisunit(z2)) {
*res = _zero_;
return;
}
/*
* If the modulus is a single digit number, then do the result
* cheaply. Check especially for a small power of two.
*/
if (zistiny(z2)) {
digit = z2.v[0];
if ((digit & -digit) == digit) { /* NEEDS 2'S COMP */
prod = (FULL) z1.v[0];
prod = (prod * prod) & (digit - 1);
} else {
z1.sign = 0;
prod = (FULL) zmodi(z1, (long) digit);
prod = (prod * prod) % digit;
}
itoz((long) prod, res);
return;
}
/*
* The modulus is more than one digit.
* Actually do the square and divide if necessary.
*/
zsquare(z1, &tmp);
if ((tmp.len < z2.len) ||
((tmp.len == z2.len) && (tmp.v[tmp.len-1] < z2.v[z2.len-1]))) {
*res = tmp;
return;
}
zmod(tmp, z2, res, 0);
zfree(tmp);
}
/*
* Calculate the number congruent to the given number whose absolute
* value is minimal. The number to be reduced can be negative or out of
* modulo range. The result will be within the range -int((modulus-1)/2)
* to int(modulus/2) inclusive. For example, for modulus 7, numbers are
* reduced to the range [-3, 3], and for modulus 8, numbers are reduced to
* the range [-3, 4].
*
* given:
* z1 number to find minimum congruence of
* z2 number to take mod with
* res result
*/
void
zminmod(ZVALUE z1, ZVALUE z2, ZVALUE *res)
{
ZVALUE tmp1, tmp2;
int sign;
int cv;
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
if (ziszero(z2) || zisneg(z2)) {
math_error("Mod of non-positive integer");
not_reached();
}
if (ziszero(z1) || zisunit(z2)) {
*res = _zero_;
return;
}
if (zistwo(z2)) {
if (zisodd(z1))
*res = _one_;
else
*res = _zero_;
return;
}
/*
* Do a quick check to see if the number is very small compared
* to the modulus. If so, then the result is obvious.
*/
if (z1.len < z2.len - 1) {
zcopy(z1, res);
return;
}
/*
* Now make sure the input number is within the modulo range.
* If not, then reduce it to be within range and make the
* quick check again.
*/
sign = z1.sign;
z1.sign = 0;
cv = zrel(z1, z2);
if (cv == 0) {
*res = _zero_;
return;
}
tmp1 = z1;
if (cv > 0) {
z1.sign = (bool)sign;
zmod(z1, z2, &tmp1, 0);
if (tmp1.len < z2.len - 1) {
*res = tmp1;
return;
}
sign = 0;
}
/*
* Now calculate the difference of the modulus and the absolute
* value of the original number. Compare the original number with
* the difference, and return the one with the smallest absolute
* value, with the correct sign. If the two values are equal, then
* return the positive result.
*/
zsub(z2, tmp1, &tmp2);
cv = zrel(tmp1, tmp2);
if (cv < 0) {
zfree(tmp2);
tmp1.sign = (bool)sign;
if (tmp1.v == z1.v)
zcopy(tmp1, res);
else
*res = tmp1;
} else {
if (cv)
tmp2.sign = !sign;
if (tmp1.v != z1.v)
zfree(tmp1);
*res = tmp2;
}
}
/*
* Compare two numbers for equality modulo a third number.
* The two numbers to be compared can be negative or out of modulo range.
* Returns true if the numbers are not congruent, and false if they are
* congruent.
*
* given:
* z1 first number to be compared
* z2 second number to be compared
* z3 modulus
*/
bool
zcmpmod(ZVALUE z1, ZVALUE z2, ZVALUE z3)
{
ZVALUE tmp1, tmp2, tmp3;
FULL digit;
LEN len;
int cv;
if (zisneg(z3) || ziszero(z3)) {
math_error("Non-positive modulus in zcmpmod");
not_reached();
}
if (zistwo(z3))
return (((z1.v[0] + z2.v[0]) & 0x1) != 0);
/*
* If the two numbers are equal, then their mods are equal.
*/
if ((z1.sign == z2.sign) && (z1.len == z2.len) &&
(z1.v[0] == z2.v[0]) && (zcmp(z1, z2) == 0))
return false;
/*
* If both numbers are negative, then we can make them positive.
*/
if (zisneg(z1) && zisneg(z2)) {
z1.sign = 0;
z2.sign = 0;
}
/*
* For small negative numbers, make them positive before comparing.
* In any case, the resulting numbers are in tmp1 and tmp2.
*/
tmp1 = z1;
tmp2 = z2;
len = z3.len;
digit = z3.v[len - 1];
if (zisneg(z1) && ((z1.len < len) ||
((z1.len == len) && (z1.v[z1.len - 1] < digit))))
zadd(z1, z3, &tmp1);
if (zisneg(z2) && ((z2.len < len) ||
((z2.len == len) && (z2.v[z2.len - 1] < digit))))
zadd(z2, z3, &tmp2);
/*
* Now compare the two numbers for equality.
* If they are equal we are all done.
*/
if (zcmp(tmp1, tmp2) == 0) {
if (tmp1.v != z1.v)
zfree(tmp1);
if (tmp2.v != z2.v)
zfree(tmp2);
return false;
}
/*
* They are not identical. Now if both numbers are positive
* and less than the modulus, then they are definitely not equal.
*/
if ((tmp1.sign == tmp2.sign) &&
((tmp1.len < len) || (zrel(tmp1, z3) < 0)) &&
((tmp2.len < len) || (zrel(tmp2, z3) < 0))) {
if (tmp1.v != z1.v)
zfree(tmp1);
if (tmp2.v != z2.v)
zfree(tmp2);
return true;
}
/*
* Either one of the numbers is negative or is large.
* So do the standard thing and subtract the two numbers.
* Then they are equal if the result is 0 (mod z3).
*/
zsub(tmp1, tmp2, &tmp3);
if (tmp1.v != z1.v)
zfree(tmp1);
if (tmp2.v != z2.v)
zfree(tmp2);
/*
* Compare the result with the modulus to see if it is equal to
* or less than the modulus. If so, we know the mod result.
*/
tmp3.sign = 0;
cv = zrel(tmp3, z3);
if (cv == 0) {
zfree(tmp3);
return false;
}
if (cv < 0) {
zfree(tmp3);
return true;
}
/*
* We are forced to actually do the division.
* The numbers are congruent if the result is zero.
*/
zmod(tmp3, z3, &tmp1, 0);
zfree(tmp3);
if (ziszero(tmp1)) {
zfree(tmp1);
return false;
} else {
zfree(tmp1);
return true;
}
}
/*
* Given the address of a positive integer whose word count does not
* exceed twice that of the modulus stored at lastmod, to evaluate and store
* at that address the value of the integer modulo the modulus.
*/
S_FUNC void
zmod5(ZVALUE *zp)
{
LEN len, modlen, j;
ZVALUE tmp1, tmp2;
ZVALUE z1, z2, z3;
HALF *a, *b;
FULL f;
HALF u;
/* firewall */
if (zp == NULL) {
math_error("%s: zp NULL", __func__);
not_reached();
}
int subcount = 0;
if (zrel(*zp, *lastmod) < 0)
return;
modlen = lastmod->len;
len = zp->len;
z1.v = zp->v + modlen - 1;
z1.len = len - modlen + 1;
z1.sign = z2.sign = z3.sign = 0;
if (z1.len > modlen + 1) {
math_error("Bad call to zmod5!!!");
not_reached();
}
z2.v = lastmodinv->v + modlen + 1 - z1.len;
z2.len = lastmodinv->len - modlen - 1 + z1.len;
zmul(z1, z2, &tmp1);
z3.v = tmp1.v + z1.len;
z3.len = tmp1.len - z1.len;
if (z3.len > 0) {
zmul(z3, *lastmod, &tmp2);
j = modlen;
a = zp->v;
b = tmp2.v;
u = 0;
len = modlen;
while (j-- > 0) {
f = (FULL) *a - (FULL) *b++ - (FULL) u;
*a++ = (HALF) f;
u = - (HALF) (f >> BASEB);
}
if (z1.len > 1) {
len++;
if (tmp2.len > modlen)
f = (FULL) *a - (FULL) *b - (FULL) u;
else
f = (FULL) *a - (FULL) u;
*a++ = (HALF) f;
}
while (len > 0 && *--a == 0)
len--;
zp->len = len;
zfree(tmp2);
}
zfree(tmp1);
while (len > 0 && zrel(*zp, *lastmod) >= 0) {
subcount++;
if (subcount > 2) {
math_error("Too many subtractions in zmod5");
not_reached();
}
j = modlen;
a = zp->v;
b = lastmod->v;
u = 0;
while (j-- > 0) {
f = (FULL) *a - (FULL) *b++ - (FULL) u;
*a++ = (HALF) f;
u = - (HALF) (f >> BASEB);
}
if (len > modlen) {
f = (FULL) *a - (FULL) u;
*a++ = (HALF) f;
}
while (len > 0 && *--a == 0)
len--;
zp->len = len;
}
if (len == 0)
zp->len = 1;
}
S_FUNC void
zmod6(ZVALUE z1, ZVALUE *res)
{
LEN len, modlen, len0;
int sign;
ZVALUE zp0, ztmp;
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
if (ziszero(z1) || zisone(*lastmod)) {
*res = _zero_;
return;
}
sign = z1.sign;
z1.sign = 0;
zcopy(z1, &ztmp);
modlen = lastmod->len;
zp0.sign = 0;
while (zrel(ztmp, *lastmod) >= 0) {
len = ztmp.len;
zp0.len = len;
len0 = 0;
if (len > 2 * modlen) {
zp0.len = 2 * modlen;
len0 = len - 2 * modlen;
}
zp0.v = ztmp.v + len - zp0.len;
zmod5(&zp0);
len = len0 + zp0.len;
while (len > 0 && ztmp.v[len - 1] == 0)
len--;
if (len == 0) {
zfree(ztmp);
*res = _zero_;
return;
}
ztmp.len = len;
}
if (sign)
zsub(*lastmod, ztmp, res);
else
zcopy(ztmp, res);
zfree(ztmp);
}
/*
* Compute the result of raising one number to a power modulo another number.
* That is, this computes: a^b (modulo c).
* This calculates the result by examining the power POWBITS bits at a time,
* using a small table of POWNUMS low powers to calculate powers for those bits,
* and repeated squaring and multiplying by the partial powers to generate
* the complete power. If the power being raised to is high enough, then
* this uses the REDC algorithm to avoid doing many divisions. When using
* REDC, multiple calls to this routine using the same modulus will be
* slightly faster.
*/
void
zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
{
HALF *hp; /* pointer to current word of the power */
REDC *rp; /* REDC information to be used */
ZVALUE *pp; /* pointer to low power table */
ZVALUE ans, temp; /* calculation values */
ZVALUE modpow; /* current small power */
ZVALUE lowpowers[POWNUMS]; /* low powers */
ZVALUE ztmp;
int curshift; /* shift value for word of power */
HALF curhalf; /* current word of power */
unsigned int curpow; /* current low power */
unsigned int curbit; /* current bit of low power */
bool free_z1; /* true => need to free z1 */
int i;
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
if (zisneg(z3) || ziszero(z3)) {
math_error("Non-positive modulus in zpowermod");
not_reached();
}
if (zisneg(z2)) {
math_error("Negative power in zpowermod");
not_reached();
}
/*
* Check easy cases first.
*/
if ((ziszero(z1) && !ziszero(z2)) || zisunit(z3)) {
/* 0^(non_zero) or x^y mod 1 always produces zero */
*res = _zero_;
return;
}
if (ziszero(z2)) { /* x^0 == 1 */
*res = _one_;
return;
}
if (zistwo(z3)) { /* mod 2 */
if (zisodd(z1))
*res = _one_;
else
*res = _zero_;
return;
}
if (zisunit(z1) && (!z1.sign || ziseven(z2))) {
/* 1^x or (-1)^(2x) */
*res = _one_;
return;
}
/*
* Normalize the number being raised to be non-negative and to lie
* within the modulo range. Then check for zero or one specially.
*/
ztmp.len = 0;
free_z1 = false;
if (zisneg(z1) || zrel(z1, z3) >= 0) {
zmod(z1, z3, &ztmp, 0);
zfree(z1);
z1 = ztmp;
free_z1 = true;
}
if (ziszero(z1)) {
zfree(z1);
if (ztmp.len)
zfree(ztmp);
*res = _zero_;
return;
}
if (zisone(z1)) {
zfree(z1);
if (ztmp.len)
zfree(ztmp);
*res = _one_;
return;
}
/*
* If modulus is large enough use zmod5
*/
if (z3.len >= conf->pow2) {
if (havelastmod && zcmp(z3, *lastmod)) {
zfree(*lastmod);
zfree(*lastmodinv);
havelastmod = false;
}
if (!havelastmod) {
zcopy(z3, lastmod);
zbitvalue(2 * z3.len * BASEB, &temp);
zquo(temp, z3, lastmodinv, 0);
zfree(temp);
havelastmod = true;
}
/* zzz */
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
pp->len = 0;
pp->v = NULL;
}
lowpowers[0] = _one_;
lowpowers[1] = z1;
ans = _one_;
hp = &z2.v[z2.len - 1];
curhalf = *hp;
curshift = BASEB - POWBITS;
while (curshift && ((curhalf >> curshift) == 0))
curshift -= POWBITS;
/*
* Calculate the result by examining the power POWBITS bits at
* a time, and use the table of low powers at each iteration.
*/
for (;;) {
curpow = (curhalf >> curshift) & (POWNUMS - 1);
pp = &lowpowers[curpow];
/*
* If the small power is not yet saved in the table,
* then calculate it and remember it in the table for
* future use.
*/
if (pp->v == NULL) {
if (curpow & 0x1) {
zcopy(z1, &modpow);
free_z1 = false;
} else {
modpow = _one_;
}
for (curbit = 0x2;
curbit <= curpow;
curbit *= 2) {
pp = &lowpowers[curbit];
if (pp->v == NULL) {
zsquare(lowpowers[curbit/2],
&temp);
zmod5(&temp);
zcopy(temp, pp);
zfree(temp);
}
if (curbit & curpow) {
zmul(*pp, modpow, &temp);
zfree(modpow);
zmod5(&temp);
zcopy(temp, &modpow);
zfree(temp);
}
}
pp = &lowpowers[curpow];
if (pp->v != NULL) {
zfree(*pp);
}
*pp = modpow;
}
/*
* If the power is nonzero, then accumulate the small
* power into the result.
*/
if (curpow) {
zmul(ans, *pp, &temp);
zfree(ans);
zmod5(&temp);
zcopy(temp, &ans);
zfree(temp);
}
/*
* Select the next POWBITS bits of the power, if
* there is any more to generate.
*/
curshift -= POWBITS;
if (curshift < 0) {
if (hp == z2.v)
break;
curhalf = *--hp;
curshift = BASEB - POWBITS;
}
/*
* Square the result POWBITS times to make room for
* the next chunk of bits.
*/
for (i = 0; i < POWBITS; i++) {
zsquare(ans, &temp);
zfree(ans);
zmod5(&temp);
zcopy(temp, &ans);
zfree(temp);
}
}
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
zfree(*pp);
}
*res = ans;
if (ztmp.len)
zfree(ztmp);
return;
}
/*
* If the modulus is odd and small enough then use
* the REDC algorithm. The size where this is done is configurable.
*/
if (z3.len < conf->redc2 && zisodd(z3)) {
if (powermodredc && zcmp(powermodredc->mod, z3)) {
zredcfree(powermodredc);
powermodredc = NULL;
}
if (powermodredc == NULL)
powermodredc = zredcalloc(z3);
rp = powermodredc;
zredcencode(rp, z1, &temp);
if (free_z1 == true) {
zfree(z1);
}
zredcpower(rp, temp, z2, &z1);
zfree(temp);
zredcdecode(rp, z1, res);
zfree(z1);
return;
}
/*
* Modulus or power is small enough to perform the power raising
* directly. Initialize the table of powers.
*/
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
pp->len = 0;
pp->v = NULL;
}
lowpowers[0] = _one_;
lowpowers[1] = z1;
ans = _one_;
hp = &z2.v[z2.len - 1];
curhalf = *hp;
curshift = BASEB - POWBITS;
while (curshift && ((curhalf >> curshift) == 0))
curshift -= POWBITS;
/*
* Calculate the result by examining the power POWBITS bits at a time,
* and use the table of low powers at each iteration.
*/
for (;;) {
curpow = (curhalf >> curshift) & (POWNUMS - 1);
pp = &lowpowers[curpow];
/*
* If the small power is not yet saved in the table, then
* calculate it and remember it in the table for future use.
*/
if (pp->v == NULL) {
if (curpow & 0x1) {
zcopy(z1, &modpow);
free_z1 = false;
} else {
modpow = _one_;
}
for (curbit = 0x2; curbit <= curpow; curbit *= 2) {
pp = &lowpowers[curbit];
if (pp->v == NULL) {
zsquare(lowpowers[curbit/2], &temp);
zmod(temp, z3, pp, 0);
zfree(temp);
}
if (curbit & curpow) {
zmul(*pp, modpow, &temp);
zfree(modpow);
zmod(temp, z3, &modpow, 0);
zfree(temp);
}
}
pp = &lowpowers[curpow];
if (pp->v != NULL) {
zfree(*pp);
}
*pp = modpow;
}
/*
* If the power is nonzero, then accumulate the small power
* into the result.
*/
if (curpow) {
zmul(ans, *pp, &temp);
zfree(ans);
zmod(temp, z3, &ans, 0);
zfree(temp);
}
/*
* Select the next POWBITS bits of the power, if there is
* any more to generate.
*/
curshift -= POWBITS;
if (curshift < 0) {
if (hp-- == z2.v)
break;
curhalf = *hp;
curshift = BASEB - POWBITS;
}
/*
* Square the result POWBITS times to make room for the next
* chunk of bits.
*/
for (i = 0; i < POWBITS; i++) {
zsquare(ans, &temp);
zfree(ans);
zmod(temp, z3, &ans, 0);
zfree(temp);
}
}
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
zfree(*pp);
}
*res = ans;
if (ztmp.len)
zfree(ztmp);
if (free_z1 == true) {
zfree(z1);
}
}
/*
* Given a positive odd N-word integer z, evaluate minv(-z, BASEB^N)
*/
S_FUNC void
zredcmodinv(ZVALUE z, ZVALUE *res)
{
ZVALUE tmp;
HALF *a0, *a, *b;
HALF bit, h, inv, v;
FULL f;
LEN N, i, j, len;
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
N = z.len;
tmp.sign = 0;
tmp.len = N;
tmp.v = alloc(N);
zclearval(tmp);
*tmp.v = 1;
h = 1 + *z.v;
bit = 1;
inv = 1;
while (h) {
bit <<= 1;
if (bit & h) {
inv |= bit;
h += bit * *z.v;
}
}
j = N;
a0 = tmp.v;
while (j-- > 0) {
v = inv * *a0;
i = j;
a = a0;
b = z.v;
f = (FULL) v * (FULL) *b++ + (FULL) *a++;
*a0 = v;
while (i-- > 0) {
f = (FULL) v * (FULL) *b++ + (FULL) *a + (f >> BASEB);
*a++ = (HALF) f;
}
while (j > 0 && *++a0 == 0)
j--;
}
a = tmp.v + N;
len = N;
while (*--a == 0)
len--;
tmp.len = len;
zcopy(tmp, res);
zfree(tmp);
}
/*
* Initialize the REDC algorithm for a particular modulus,
* returning a pointer to a structure that is used for other
* REDC calls. An error is generated if the structure cannot
* be allocated. The modulus must be odd and positive.
*
* given:
* z1 modulus to initialize for
*/
REDC *
zredcalloc(ZVALUE z1)
{
REDC *rp; /* REDC information */
ZVALUE tmp;
long bit;
if (ziseven(z1) || zisneg(z1)) {
math_error("REDC requires positive odd modulus");
not_reached();
}
rp = (REDC *) malloc(sizeof(REDC));
if (rp == NULL) {
math_error("Cannot allocate REDC structure");
not_reached();
}
/*
* Round up the binary modulus to the next power of two
* which is at a word boundary. Then the shift and modulo
* operations mod the binary modulus can be done very cheaply.
* Calculate the REDC format for the number 1 for future use.
*/
zcopy(z1, &rp->mod);
zredcmodinv(z1, &rp->inv);
bit = zhighbit(z1) + 1;
if (bit % BASEB)
bit += (BASEB - (bit % BASEB));
zbitvalue(bit, &tmp);
zmod(tmp, rp->mod, &rp->one, 0);
zfree(tmp);
rp->len = (LEN)(bit / BASEB);
return rp;
}
/*
* Free any numbers associated with the specified REDC structure,
* and then the REDC structure itself.
*
* given:
* rp REDC information to be cleared
*/
void
zredcfree(REDC *rp)
{
/* firewall */
if (rp == NULL) {
math_error("%s: rp NULL", __func__);
not_reached();
}
zfree(rp->mod);
zfree(rp->inv);
zfree(rp->one);
free(rp);
}
/*
* Convert a normal number into the specified REDC format.
* The number to be converted can be negative or out of modulo range.
* The resulting number can be used for multiplying, adding, subtracting,
* or comparing with any other such converted numbers, as if the numbers
* were being calculated modulo the number which initialized the REDC
* information. When the final value is not converted, the result is the
* same as if the usual operations were done with the original numbers.
*
* given:
* rp REDC information
* z1 number to be converted
* res returned converted number
*/
void
zredcencode(REDC *rp, ZVALUE z1, ZVALUE *res)
{
ZVALUE tmp1;
/* firewall */
if (rp == NULL) {
math_error("%s: rp NULL", __func__);
not_reached();
}
if (res == NULL) {
math_error("%s: res NULL", __func__);