.. testsetup:: * from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.core.lightning import LightningModule
Comet.ml is a third-party logger. To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following. First, install the package:
pip install comet-ml
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode:: import os from pytorch_lightning.loggers import CometLogger comet_logger = CometLogger( api_key=os.environ.get('COMET_API_KEY'), workspace=os.environ.get('COMET_WORKSPACE'), # Optional save_dir='.', # Optional project_name='default_project', # Optional rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional experiment_name='default' # Optional ) trainer = Trainer(logger=comet_logger)
The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except __init__
in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso:: :class:`~pytorch_lightning.loggers.CometLogger` docs.
MLflow is a third-party logger. To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following. First, install the package:
pip install mlflow
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode:: from pytorch_lightning.loggers import MLFlowLogger mlf_logger = MLFlowLogger( experiment_name="default", tracking_uri="file:./ml-runs" ) trainer = Trainer(logger=mlf_logger)
.. seealso:: :class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
Neptune.ai is a third-party logger. To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following. First, install the package:
pip install neptune-client
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode:: from pytorch_lightning.loggers import NeptuneLogger neptune_logger = NeptuneLogger( api_key='ANONYMOUS', # replace with your own project_name='shared/pytorch-lightning-integration', experiment_name='default', # Optional, params={'max_epochs': 10}, # Optional, tags=['pytorch-lightning', 'mlp'], # Optional, ) trainer = Trainer(logger=neptune_logger)
The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except __init__
in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso:: :class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
To use TensorBoard as your logger do the following.
.. testcode:: from pytorch_lightning.loggers import TensorBoardLogger logger = TensorBoardLogger('tb_logs', name='my_model') trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except __init__
in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso:: :class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
Test Tube is a TensorBoard logger but with nicer file structure. To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following. First, install the package:
pip install test_tube
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode:: from pytorch_lightning.loggers import TestTubeLogger logger = TestTubeLogger('tb_logs', name='my_model') trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except __init__
in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso:: :class:`~pytorch_lightning.loggers.TestTubeLogger` docs.
Weights and Biases is a third-party logger. To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following. First, install the package:
pip install wandb
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode:: from pytorch_lightning.loggers import WandbLogger wandb_logger = WandbLogger(offline=True) trainer = Trainer(logger=wandb_logger)
The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except __init__
in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.log({ "generated_images": [wandb.Image(some_img, caption="...")] })
.. seealso:: :class:`~pytorch_lightning.loggers.WandbLogger` docs.
Lightning supports the use of multiple loggers, just pass a list to the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
.. testcode:: from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger logger1 = TensorBoardLogger('tb_logs', name='my_model') logger2 = TestTubeLogger('tb_logs', name='my_model') trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except __init__
in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() # Option 1 self.logger.experiment[0].add_image('generated_images', some_img, 0) # Option 2 self.logger[0].experiment.add_image('generated_images', some_img, 0)