forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_loop.py
638 lines (488 loc) · 21.9 KB
/
evaluation_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
"""
Validation loop
===============
The lightning validation loop handles everything except the actual computations of your model.
To decide what will happen in your validation loop, define the `validation_step` function.
Below are all the things lightning automates for you in the validation loop.
.. note:: Lightning will run 5 steps of validation in the beginning of training as a sanity
check so you don't have to wait until a full epoch to catch possible validation issues.
Check validation every n epochs
-------------------------------
If you have a small dataset you might want to check validation every n epochs
.. code-block:: python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
Set how much of the validation set to check
-------------------------------------------
If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag.
limit_val_batches will be overwritten by overfit_batches if `overfit_batches > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(limit_val_batches=1.0)
# check 10% only
trainer = Trainer(limit_val_batches=0.1)
Set how much of the test set to check
-------------------------------------
If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag.
limit_test_batches will be overwritten by overfit_batches if `overfit_batches > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(limit_test_batches=1.0)
# check 10% only
trainer = Trainer(limit_test_batches=0.1)
Set validation check frequency within 1 training epoch
------------------------------------------------------
For large datasets it's often desirable to check validation multiple times within a training loop.
Pass in a float to check that often within 1 training epoch.
Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
.. code-block:: python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
Set the number of validation sanity steps
-----------------------------------------
Lightning runs a few steps of validation in the beginning of training.
This avoids crashing in the validation loop sometime deep into a lengthy training loop.
.. code-block:: python
# DEFAULT
trainer = Trainer(num_sanity_val_steps=2)
You can use `Trainer(num_sanity_val_steps=0)` to skip the sanity check or `Trainer(num_sanity_val_steps=-1)`
to check all the validation data.
# Testing loop
To ensure you don't accidentally use test data to guide training decisions Lightning
makes running the test set deliberate.
**test**
You have two options to run the test set.
First case is where you test right after a full training routine.
.. code-block:: python
# run full training
trainer.fit(model)
# run test set
trainer.test()
Second case is where you load a model and run the test set
.. code-block:: python
model = MyLightningModule.load_from_checkpoint(
checkpoint_path='/path/to/pytorch_checkpoint.ckpt',
hparams_file='/path/to/test_tube/experiment/version/hparams.yaml',
map_location=None
)
# init trainer with whatever options
trainer = Trainer(...)
# test (pass in the model)
trainer.test(model)
In this second case, the options you pass to trainer will be used when running
the test set (ie: 16-bit, dp, ddp, etc...)
"""
from abc import ABC, abstractmethod
from pprint import pprint
from typing import Callable, List, Union
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.overrides.data_parallel import LightningDistributedDataParallel, LightningDataParallel
from pytorch_lightning.utilities import rank_zero_warn, NATIVE_AMP_AVALAIBLE, flatten_dict
from torch import distributed as dist
from pytorch_lightning.core.step_result import Result, EvalResult
from pytorch_lightning.utilities.exceptions import MisconfigurationException
try:
import torch_xla.distributed.parallel_loader as xla_pl
import torch_xla.core.xla_model as xm
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
try:
import horovod.torch as hvd
except (ModuleNotFoundError, ImportError):
HOROVOD_AVAILABLE = False
else:
HOROVOD_AVAILABLE = True
class TrainerEvaluationLoopMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
on_gpu: bool
use_ddp: bool
use_dp: bool
use_ddp2: bool
use_horovod: bool
use_single_gpu: bool
data_parallel_device_ids: ...
model: LightningModule
num_test_batches: List[int]
num_val_batches: int
world_size: int
fast_dev_run: ...
process_output: ...
progress_bar_dict: ...
global_rank: int
current_epoch: int
callback_metrics: ...
test_dataloaders: DataLoader
val_dataloaders: DataLoader
use_tpu: bool
reload_dataloaders_every_epoch: ...
tpu_id: int
verbose_test: bool
running_sanity_check: bool
# Callback system
on_validation_batch_start: Callable
on_validation_batch_end: Callable
on_test_batch_start: Callable
on_test_batch_end: Callable
on_validation_start: Callable
on_validation_end: Callable
on_test_start: Callable
on_test_end: Callable
@abstractmethod
def copy_trainer_model_properties(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def get_model(self) -> LightningModule:
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def is_overridden(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def transfer_batch_to_tpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def transfer_batch_to_gpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def add_progress_bar_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def log_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_test_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_val_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
def __call_eval_loop_hook_start(self, test_mode):
"""on_validation/test_epoch_start"""
self.__call_eval_loop_hook_evt(test_mode, 'start')
def __call_eval_loop_hook_end(self, test_mode):
"""on_validation/test_epoch_end"""
self.__call_eval_loop_hook_evt(test_mode, 'end')
def __call_eval_loop_hook_evt(self, test_mode, epoch_event):
model = self.get_model()
# on_[train/validation]_epoch_start hook
hook_root_name = 'test' if test_mode else 'validation'
hook_name = f'on_{hook_root_name}_epoch_{epoch_event}'
with self.profiler.profile(hook_name):
# call hook
getattr(self, hook_name)()
# model hooks
if self.is_function_implemented(hook_name):
getattr(model, hook_name)()
def _evaluate(
self,
model: LightningModule,
dataloaders: List[DataLoader],
max_batches: Union[int, List[int]],
test_mode: bool = False
):
"""Run evaluation code.
Args:
model: The model to evaluate.
dataloaders: A list of PyTorch dataloaders.
max_batches: An integer or list of integers with length of the number of dataloaders. Each
entry is the number of batches to process in the corresponding dataloader.
test_mode:
"""
# enable eval mode
model.zero_grad()
model.eval()
# copy properties for forward overrides
self.copy_trainer_model_properties(model)
# disable gradients to save memory
torch.set_grad_enabled(False)
# bookkeeping
outputs = []
# convert max_batches to list
if isinstance(max_batches, int):
max_batches = [max_batches] * len(dataloaders)
# --------------------------
# ON_EVAL_EPOCH_START hook
# --------------------------
self.__call_eval_loop_hook_start(test_mode)
# run validation
for dataloader_idx, dataloader in enumerate(dataloaders):
dl_outputs = []
# on TPU we have to wrap it under the ParallelLoader
if self.use_tpu:
device = xm.xla_device(self.tpu_id)
dataloader = xla_pl.ParallelLoader(dataloader, [device])
dataloader = dataloader.per_device_loader(device)
# each dataloader has a max num batches
dl_max_batches = max_batches[dataloader_idx]
for batch_idx, batch in enumerate(dataloader):
if batch is None:
continue
# stop short when running on limited batches
if batch_idx >= dl_max_batches:
break
# callbacks
if test_mode:
self.on_test_batch_start()
else:
self.on_validation_batch_start()
# -----------------
# RUN EVALUATION STEP
# -----------------
if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu:
with torch.cuda.amp.autocast():
output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode)
else:
output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode)
# allow only EvalResult when using structured results (from val_step)
if isinstance(output, Result) and not isinstance(output, EvalResult):
m = 'only EvalResults or dicts are allowed from validation_step'
raise MisconfigurationException(m)
# on dp / ddp2 might still want to do something with the batch parts
if test_mode:
if self.is_overridden('test_step_end'):
model_ref = self.get_model()
with self.profiler.profile('test_step_end'):
output = model_ref.test_step_end(output)
self.on_test_batch_end()
else:
if self.is_overridden('validation_step_end'):
model_ref = self.get_model()
with self.profiler.profile('validation_step_end'):
output = model_ref.validation_step_end(output)
self.on_validation_batch_end()
# track outputs for collation
if output is not None:
dl_outputs.append(output)
self.__eval_add_step_metrics(output)
# track debug metrics
self.dev_debugger.track_eval_loss_history(test_mode, batch_idx, dataloader_idx, output)
outputs.append(dl_outputs)
# ---------------------
# EVAL_EPOCH_END
# ---------------------
using_eval_result = len(outputs) > 0 and len(outputs[0]) > 0 and isinstance(outputs[0][0], EvalResult)
eval_results = self.__run_eval_epoch_end(test_mode, outputs, dataloaders, using_eval_result)
# log callback metrics
self.__update_callback_metrics(eval_results, using_eval_result)
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
# --------------------------
# ON_EVAL_EPOCH_END hook
# --------------------------
self.__call_eval_loop_hook_end(test_mode)
return eval_results
def __update_callback_metrics(self, eval_results, using_eval_result):
if using_eval_result:
if isinstance(eval_results, list):
for eval_result in eval_results:
self.callback_metrics = eval_result.callback_metrics
else:
self.callback_metrics = eval_results.callback_metrics
else:
if isinstance(eval_results, list):
for eval_result in eval_results:
# with a scalar return, auto set it to "val_loss" for callbacks
if isinstance(eval_result, torch.Tensor):
flat = {'val_loss': eval_result}
else:
flat = flatten_dict(eval_result)
self.callback_metrics.update(flat)
else:
# with a scalar return, auto set it to "val_loss" for callbacks
if isinstance(eval_results, torch.Tensor):
flat = {'val_loss': eval_results}
else:
flat = flatten_dict(eval_results)
self.callback_metrics.update(flat)
def __run_eval_epoch_end(self, test_mode, outputs, dataloaders, using_eval_result):
model = self.get_model()
# with a single dataloader don't pass an array
eval_results = outputs
if len(dataloaders) == 1:
eval_results = outputs[0]
user_reduced = False
if test_mode:
if self.is_overridden('test_end', model=model):
# TODO: remove in v1.0.0
if using_eval_result:
eval_results = self.__gather_epoch_end_eval_results(outputs)
eval_results = model.test_end(eval_results)
user_reduced = True
rank_zero_warn('Method `test_end` was deprecated in v0.7 and will be removed in v1.0.'
' Use `test_epoch_end` instead.', DeprecationWarning)
elif self.is_overridden('test_epoch_end', model=model):
if using_eval_result:
eval_results = self.__gather_epoch_end_eval_results(outputs)
eval_results = model.test_epoch_end(eval_results)
user_reduced = True
else:
if self.is_overridden('validation_end', model=model):
# TODO: remove in v1.0.0
if using_eval_result:
eval_results = self.__gather_epoch_end_eval_results(outputs)
eval_results = model.validation_end(eval_results)
user_reduced = True
rank_zero_warn('Method `validation_end` was deprecated in v0.7 and will be removed in v1.0.'
' Use `validation_epoch_end` instead.', DeprecationWarning)
elif self.is_overridden('validation_epoch_end', model=model):
if using_eval_result:
eval_results = self.__gather_epoch_end_eval_results(outputs)
eval_results = model.validation_epoch_end(eval_results)
user_reduced = True
if using_eval_result and not user_reduced:
eval_results = self.__auto_reduce_result_objs(outputs)
if not isinstance(eval_results, list):
eval_results = [eval_results]
return eval_results
def __gather_epoch_end_eval_results(self, outputs):
eval_results = []
for epoch_output in outputs:
result = epoch_output[0].__class__.gather(epoch_output)
if 'checkpoint_on' in result:
result.checkpoint_on = result.checkpoint_on.mean()
if 'early_stop_on' in result:
result.early_stop_on = result.early_stop_on.mean()
eval_results.append(result)
# with 1 dataloader don't pass in a list
if len(eval_results) == 1:
eval_results = eval_results[0]
return eval_results
def __eval_add_step_metrics(self, output):
# track step level metrics
if isinstance(output, EvalResult) and not self.running_sanity_check:
step_log_metrics = output.batch_log_metrics
step_pbar_metrics = output.batch_pbar_metrics
if len(step_log_metrics) > 0:
self.log_metrics(step_log_metrics, {})
if len(step_pbar_metrics) > 0:
self.add_progress_bar_metrics(step_pbar_metrics)
def __auto_reduce_result_objs(self, outputs):
# outputs has a list of results per dataloader
eval_results = []
for dl_output in outputs:
result = dl_output[0]
result = result.__class__.reduce_on_epoch_end(dl_output)
if 'checkpoint_on' in result:
result.checkpoint_on = result.checkpoint_on.mean()
if 'early_stop_on' in result:
result.early_stop_on = result.early_stop_on.mean()
eval_results.append(result)
return eval_results
def run_evaluation(self, test_mode: bool = False):
# hook
model = self.get_model()
model.on_pre_performance_check()
# select dataloaders
if test_mode:
self.reset_test_dataloader(model)
dataloaders = self.test_dataloaders
max_batches = self.num_test_batches
else:
# val
if self.val_dataloaders is None:
self.reset_val_dataloader(model)
dataloaders = self.val_dataloaders
max_batches = self.num_val_batches
if dataloaders is None:
return [], []
# Validation/Test begin callbacks
if test_mode:
self.on_test_start()
else:
self.on_validation_start()
# enable disabling validation step with limit_val_batches = 0
should_skip = sum(max_batches) == 0
if should_skip:
return [], []
# run evaluation (val_step + val_step_end + val_epoch_end)
eval_results = self._evaluate(self.model, dataloaders, max_batches, test_mode)
# log the final eval loop metrics
eval_loop_results = self.__log_evaluation_epoch_metrics(eval_results, test_mode)
# hook
model.on_post_performance_check()
# eventual dataset reloading
if test_mode:
if self.reload_dataloaders_every_epoch:
self.reset_test_dataloader(model)
else:
# val
if self.reload_dataloaders_every_epoch:
self.reset_val_dataloader(model)
# Validation/Test end callbacks
if test_mode:
self.on_test_end()
else:
self.on_validation_end()
return eval_loop_results, eval_results
def __log_evaluation_epoch_metrics(self, eval_results, test_mode):
eval_loop_results = []
if eval_results is not None and len(eval_results) > 0:
# in eval, the user may return something at every validation step without final reduction
if not isinstance(eval_results, list):
eval_results = [eval_results]
for result_idx, result in enumerate(eval_results):
if isinstance(result, EvalResult):
prog_bar_metrics = result.epoch_pbar_metrics
log_metrics = result.epoch_log_metrics
callback_metrics = result.callback_metrics
else:
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(result)
# eval loop returns all metrics
dataloader_result_metrics = {**prog_bar_metrics, **log_metrics, **callback_metrics}
# add metrics to prog bar
self.add_progress_bar_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
if len(dataloader_result_metrics) > 0:
eval_loop_results.append(dataloader_result_metrics)
# log results of test
if test_mode and self.is_global_zero and self.verbose_test:
print('-' * 80)
for result_idx, results in enumerate(eval_loop_results):
print(f'DATALOADER:{result_idx} TEST RESULTS')
pprint(results)
print('-' * 80)
return eval_loop_results
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test_mode: bool = False):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
if (test_mode and len(self.test_dataloaders) > 1) \
or (not test_mode and len(self.val_dataloaders) > 1):
args.append(dataloader_idx)
# handle DP, DDP forward
if self.use_ddp or self.use_dp or self.use_ddp2:
output = model(*args)
return output
# Horovod
if self.use_horovod and self.on_gpu:
batch = self.transfer_batch_to_gpu(batch, hvd.local_rank())
args[0] = batch
# single GPU data transfer
if self.use_single_gpu:
# for single GPU put inputs on gpu manually
root_gpu = 0
if isinstance(self.data_parallel_device_ids, list):
root_gpu = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(batch, root_gpu)
args[0] = batch
# TPU data transfer
if self.use_tpu:
batch = self.transfer_batch_to_tpu(batch, self.tpu_id)
args[0] = batch
# CPU, TPU or gpu step
if test_mode:
output = model.test_step(*args)
else:
output = model.validation_step(*args)
return output