|
| 1 | +LightningDataModule |
| 2 | +=================== |
| 3 | +Data preparation in PyTorch follows 5 steps: |
| 4 | + |
| 5 | +1. Download / tokenize / process. |
| 6 | +2. Clean and (maybe) save to disk. |
| 7 | +3. Load inside :class:`~torch.utils.data.Dataset`. |
| 8 | +4. Apply transforms (rotate, tokenize, etc...). |
| 9 | +5. Wrap inside a :class:`~torch.utils.data.DataLoader`. |
| 10 | + |
| 11 | +A DataModule is simply a collection of a train_dataloader, val_dataloader(s), test_dataloader(s) along with the |
| 12 | +matching transforms and data processing/downloads steps required. |
| 13 | + |
| 14 | + |
| 15 | + >>> import pytorch_lightning as pl |
| 16 | + >>> class MNISTDataModule(pl.LightningDataModule): |
| 17 | + ... def prepare_data(self): |
| 18 | + ... # download |
| 19 | + ... MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()) |
| 20 | + ... MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor()) |
| 21 | + ... |
| 22 | + ... def setup(self, stage): |
| 23 | + ... mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transforms.ToTensor()) |
| 24 | + ... mnist_test = MNIST(os.getcwd(), train=False, download=False, transform=transforms.ToTensor()) |
| 25 | + ... # train/val split |
| 26 | + ... mnist_train, mnist_val = random_split(mnist_train, [55000, 5000]) |
| 27 | + ... |
| 28 | + ... # assign to use in dataloaders |
| 29 | + ... self.train_dataset = mnist_train |
| 30 | + ... self.val_dataset = mnist_val |
| 31 | + ... self.test_dataset = mnist_test |
| 32 | + ... |
| 33 | + ... def train_dataloader(self): |
| 34 | + ... return DataLoader(self.train_dataset, batch_size=64) |
| 35 | + ... |
| 36 | + ... def val_dataloader(self): |
| 37 | + ... return DataLoader(self.mnist_val, batch_size=64) |
| 38 | + ... |
| 39 | + ... def test_dataloader(self): |
| 40 | + ... return DataLoader(self.mnist_test, batch_size=64) |
| 41 | + |
| 42 | +--------------- |
| 43 | + |
| 44 | +Methods |
| 45 | +------- |
| 46 | +To define a DataModule define 5 methods: |
| 47 | + |
| 48 | +- prepare_data (how to download(), tokenize, etc...) |
| 49 | +- setup (how to split, etc...) |
| 50 | +- train_dataloader |
| 51 | +- val_dataloader(s) |
| 52 | +- test_dataloader(s) |
| 53 | + |
| 54 | +prepare_data |
| 55 | +^^^^^^^^^^^^ |
| 56 | +Use this method to do things that might write to disk or that need to be done only from a single GPU in distributed |
| 57 | +settings. |
| 58 | + |
| 59 | +- download |
| 60 | +- tokenize |
| 61 | +- etc... |
| 62 | + |
| 63 | + >>> class MNISTDataModule(pl.LightningDataModule): |
| 64 | + ... def prepare_data(self): |
| 65 | + ... # download |
| 66 | + ... MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()) |
| 67 | + ... MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor()) |
| 68 | + |
| 69 | +.. warning:: `prepare_data` is called from a single GPU. Do not use it to assign state (`self.x = y`). |
| 70 | + |
| 71 | +setup |
| 72 | +^^^^^ |
| 73 | +There are also data operations you might want to perform on every GPU. Use setup to do things like: |
| 74 | + |
| 75 | +- count number of classes |
| 76 | +- build vocabulary |
| 77 | +- perform train/val/test splits |
| 78 | +- etc... |
| 79 | + |
| 80 | + >>> import pytorch_lightning as pl |
| 81 | + >>> class MNISTDataModule(pl.LightningDataModule): |
| 82 | + ... def setup(self, stage): |
| 83 | + ... mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transforms.ToTensor()) |
| 84 | + ... mnist_test = MNIST(os.getcwd(), train=False, download=False, transform=transforms.ToTensor()) |
| 85 | + ... # train/val split |
| 86 | + ... mnist_train, mnist_val = random_split(mnist_train, [55000, 5000]) |
| 87 | + ... |
| 88 | + ... # assign to use in dataloaders |
| 89 | + ... self.train_dataset = mnist_train |
| 90 | + ... self.val_dataset = mnist_val |
| 91 | + ... self.test_dataset = mnist_test |
| 92 | + |
| 93 | +.. warning:: `setup` is called from every GPU. Setting state here is okay. |
| 94 | + |
| 95 | +train_dataloader |
| 96 | +^^^^^^^^^^^^^^^^ |
| 97 | +Use this method to generate the train dataloader. This is also a good place to place default transformations. |
| 98 | + |
| 99 | + >>> import pytorch_lightning as pl |
| 100 | + >>> class MNISTDataModule(pl.LightningDataModule): |
| 101 | + ... def train_dataloader(self): |
| 102 | + ... transforms = transform_lib.Compose([ |
| 103 | + ... transform_lib.ToTensor(), |
| 104 | + ... transform_lib.Normalize(mean=(0.5,), std=(0.5,)), |
| 105 | + ... ]) |
| 106 | + ... return DataLoader(self.train_dataset, transform=transforms, batch_size=64) |
| 107 | + |
| 108 | +However, to decouple your data from transforms you can parametrize them via `__init__`. |
| 109 | + |
| 110 | +.. code-block:: python |
| 111 | +
|
| 112 | + class MNISTDataModule(pl.LightningDataModule): |
| 113 | + def __init__(self, train_transforms, val_transforms, test_transforms): |
| 114 | + self.train_transforms = train_transforms |
| 115 | + self.val_transforms = val_transforms |
| 116 | + self.test_transforms = test_transforms |
| 117 | +
|
| 118 | +val_dataloader |
| 119 | +^^^^^^^^^^^^^^ |
| 120 | +Use this method to generate the val dataloader. This is also a good place to place default transformations. |
| 121 | + |
| 122 | + >>> import pytorch_lightning as pl |
| 123 | + >>> class MNISTDataModule(pl.LightningDataModule): |
| 124 | + ... def val_dataloader(self): |
| 125 | + ... transforms = transform_lib.Compose([ |
| 126 | + ... transform_lib.ToTensor(), |
| 127 | + ... transform_lib.Normalize(mean=(0.5,), std=(0.5,)), |
| 128 | + ... ]) |
| 129 | + ... return DataLoader(self.val_dataset, transform=transforms, batch_size=64) |
| 130 | + |
| 131 | +test_dataloader |
| 132 | +^^^^^^^^^^^^^^^ |
| 133 | +Use this method to generate the test dataloader. This is also a good place to place default transformations. |
| 134 | + |
| 135 | + >>> import pytorch_lightning as pl |
| 136 | + >>> class MNISTDataModule(pl.LightningDataModule): |
| 137 | + ... def test_dataloader(self): |
| 138 | + ... transforms = transform_lib.Compose([ |
| 139 | + ... transform_lib.ToTensor(), |
| 140 | + ... transform_lib.Normalize(mean=(0.5,), std=(0.5,)), |
| 141 | + ... ]) |
| 142 | + ... return DataLoader(self.test_dataset, transform=transforms, batch_size=64) |
| 143 | + |
| 144 | +------------------ |
| 145 | + |
| 146 | +Using a DataModule |
| 147 | +------------------ |
| 148 | +The recommended way to use a DataModule is simply: |
| 149 | + |
| 150 | +.. code-block:: python |
| 151 | +
|
| 152 | + dm = MNISTDataModule() |
| 153 | + model = Model() |
| 154 | + trainer.fit(model, dm) |
| 155 | +
|
| 156 | + trainer.test(datamodule=dm) |
| 157 | +
|
| 158 | +If you need information from the dataset to build your model, then run `prepare_data` and `setup` manually (Lightning |
| 159 | +still ensures the method runs on the correct devices) |
| 160 | + |
| 161 | +.. code-block:: python |
| 162 | +
|
| 163 | + dm = MNISTDataModule() |
| 164 | + dm.prepare_data() |
| 165 | + dm.setup() |
| 166 | +
|
| 167 | + model = Model(num_classes=dm.num_classes, width=dm.width, vocab=dm.vocab) |
| 168 | + trainer.fit(model, dm) |
| 169 | +
|
| 170 | + trainer.test(model, datamodule=dm) |
| 171 | +
|
| 172 | +---------------- |
| 173 | + |
| 174 | +Why use datamodules? |
| 175 | +-------------------- |
| 176 | +DataModules have a few key advantages: |
| 177 | + |
| 178 | +- It decouples the data from the model. |
| 179 | +- It has all the necessary details for anyone to use the exact same data setup. |
| 180 | +- Datamodules can be shared across models. |
| 181 | +- Datamodules can also be used without Lightning by calling the methods directly |
| 182 | + |
| 183 | +.. code-block:: python |
| 184 | +
|
| 185 | + dm = MNISTDataModule() |
| 186 | + dm.prepare_data() |
| 187 | + dm.setup() |
| 188 | +
|
| 189 | + for batch in dm.train_dataloader(): |
| 190 | + ... |
| 191 | + for batch in dm.val_dataloader(): |
| 192 | + ... |
| 193 | + for batch in dm.test_dataloader(): |
| 194 | + ... |
| 195 | +
|
| 196 | +But overall, DataModules encourage reproducibility by allowing all details of a dataset to be specified in a unified |
| 197 | +structure. |
0 commit comments