-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.py
55 lines (40 loc) · 1.28 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
class LinearRegression:
"""
Linear Regression model using gradient descent.
"""
def __init__(self, lr=1e-4, n_iter=1000):
self.lr = lr
self.n_iter = n_iter
# Training parameters
self.weights = None
self.bias = None
def fit(self, X, y):
n_samples, n_features = X.shape
# Initialize parameters
self.weights = np.random.randn(n_features)
self.bias = 0
# Gradient descent
for _ in range(self.n_iter):
y_pred = np.dot(X, self.weights) + self.bias
# Find gradients
dw = np.dot(X.T, (y_pred - y)) / n_samples
db = np.sum(y_pred - y) / n_samples
# Update parameters
self.weights -= self.lr * dw
self.bias -= self.lr * db
def predict(self, X):
return np.dot(X, self.weights) + self.bias
class LinearRegressionCFS:
"""
Linear Regression using closed-form solution.
"""
def __init__(self):
self.weights = None
def fit(self, X, y):
# CFS
X = np.insert(X, 0, 1, axis=1)
self.weights = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
def predict(self, X):
X = np.insert(X, 0, 1, axis=1)
return np.dot(X, self.weights)