-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
40 lines (29 loc) · 1023 Bytes
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from utils.activation import sigmoid
class LogisticRegression:
"""
Logistic regression classifier using gradient descent.
"""
def __init__(self, lr=1e-4, n_iter=1000):
self.lr = lr
self.n_iter = n_iter
# Training parameters
self.weights = None
self.bias = None
def fit(self, X, y):
n_samples, n_features = X.shape
# Initialize parameters
self.weights = np.random.randn(n_features)
self.bias = 0
# Gradient descent
for _ in range(self.n_iter):
y_pred = sigmoid(np.dot(X, self.weights) + self.bias)
# Find gradients
dw = np.dot(X.T, (y_pred - y)) / n_samples
db = np.sum(y_pred - y) / n_samples
# Update parameters
self.weights -= self.lr * dw
self.bias -= self.lr * db
def predict(self, X):
y_pred = sigmoid(np.dot(X, self.weights) + self.bias)
return np.where(y_pred >= 0.5, 1, 0)