-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm.py
44 lines (33 loc) · 1.21 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
class SVM:
"""
Support Vector Machine (SVM) classifier.
"""
def __init__(self, lr=1e-4, n_iter=1000, lambda_param=1e-3):
self.lr = lr
self.n_iter = n_iter
self.lambda_param = lambda_param
# Training parameters
self.weights = None
self.bias = None
def fit(self, X, y):
n_features = X.shape[1]
# Initialize parameters
self.weights = np.zeros(n_features)
self.bias = 0
for _ in range(self.n_iter):
y_labels = np.where(y <= 0, -1, 1)
# Subgradient descent for hinge loss
for i, X_i in enumerate(X):
condition = y_labels[i] * (np.dot(X_i, self.weights) + self.bias) >= 1
if condition:
dw = self.lambda_param * self.weights
db = 0
else:
dw = self.lambda_param * self.weights - np.dot(X_i, y_labels[i])
db = -y_labels[i]
self.weights -= self.lr * dw
self.bias -= self.lr * db
def predict(self, X):
y_pred = np.sign(np.dot(X, self.weights) + self.bias)
return np.where(y_pred <= 0, 0, 1)