-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk_means.py
59 lines (45 loc) · 1.93 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
class KMeans:
"""
K-Means clustering algorithm. Use k-means++ initialization as default.
References:
https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf
https://stackoverflow.com/questions/5466323/how-could-one-implement-the-k-means-algorithm
https://github.com/scikit-learn/scikit-learn/blob/9aaed4987/sklearn/cluster/_kmeans.py
"""
def __init__(self, k=8, n_iter=300, init="k-means++"):
self.k = k
self.n_iter = n_iter
self.init = init
# Training parameters
self.centers = None
def init_centers(self, X):
if self.init == "k-means++":
# Initialize with a random center c1 (seed)
centers = [X[np.random.randint(0, len(X))]]
# Choose the next k-1 centers with probability
for _ in range(self.k - 1):
d2 = np.array([min([np.inner(c - x, c - x) for c in centers]) for x in X])
probs = d2 / d2.sum()
probs_cumsum = probs.cumsum()
r = np.random.rand()
for i, p in enumerate(probs_cumsum):
if p > r:
centers.append(X[i])
break
elif self.init == "random":
centers = X[np.random.choice(len(X), self.k, replace=False)]
else:
raise ValueError("Invalid init method.")
return np.array(centers)
def fit(self, X):
# Initialize centers
self.centers = self.init_centers(X)
# Update centers
for _ in range(self.n_iter):
dists = np.sqrt(((X - self.centers[:, np.newaxis]) ** 2).sum(axis=2))
clusters = np.argmin(dists, axis=0)
self.centers = np.array([X[clusters == k].mean(axis=0) for k in range(self.k)])
def predict(self, X):
dists = np.sqrt(((X - self.centers[:, np.newaxis]) ** 2).sum(axis=2))
return np.argmin(dists, axis=0)