-
Notifications
You must be signed in to change notification settings - Fork 526
/
Copy pathoperator_registry.cpp
262 lines (233 loc) · 7.51 KB
/
operator_registry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/runtime/kernel/operator_registry.h>
#include <cinttypes>
#include <executorch/runtime/platform/assert.h>
#include <executorch/runtime/platform/platform.h>
#include <executorch/runtime/platform/system.h>
namespace executorch {
namespace ET_RUNTIME_NAMESPACE {
namespace {
// Maximum number of operators and their associated kernels that can be
// registered.
#ifdef MAX_KERNEL_NUM
constexpr uint32_t kMaxRegisteredKernels = MAX_KERNEL_NUM;
#else
constexpr uint32_t kMaxOperators = 250;
constexpr uint32_t kMaxKernelsPerOp = 8;
constexpr uint32_t kMaxRegisteredKernels = kMaxOperators * kMaxKernelsPerOp;
#endif
// Data that backs the kernel table. Since Kernel has a custom default
// constructor (implicitly, because it contains KernelKey, which has a custom
// ctor), some toolchains don't like having a global array of them: it would
// require constructing them at init time. Since we don't care about the values
// until we add each entry to the table, allocate static zeroed memory instead
// and point the table at it.
// @lint-ignore CLANGTIDY facebook-hte-CArray
alignas(sizeof(Kernel)) uint8_t
registered_kernels_data[kMaxRegisteredKernels * sizeof(Kernel)];
/// Global table of registered kernels.
Kernel* registered_kernels = reinterpret_cast<Kernel*>(registered_kernels_data);
/// The number of kernels registered in the table.
size_t num_registered_kernels = 0;
// Registers the kernels, but may return an error.
Error register_kernels_internal(const Span<const Kernel> kernels) {
// Operator registration happens in static initialization time before or after
// PAL init, so call it here. It is safe to call multiple times.
::et_pal_init();
if (kernels.size() + num_registered_kernels > kMaxRegisteredKernels) {
ET_LOG(
Error,
"The total number of kernels to be registered is larger than the limit "
"%" PRIu32 ". %" PRIu32
" kernels are already registered and we're trying to register another "
"%" PRIu32 " kernels.",
kMaxRegisteredKernels,
(uint32_t)num_registered_kernels,
(uint32_t)kernels.size());
ET_LOG(Error, "======== Kernels already in the registry: ========");
for (size_t i = 0; i < num_registered_kernels; i++) {
ET_LOG(Error, "%s", registered_kernels[i].name_);
ET_LOG_KERNEL_KEY(registered_kernels[i].kernel_key_);
}
ET_LOG(Error, "======== Kernels being registered: ========");
for (size_t i = 0; i < kernels.size(); i++) {
ET_LOG(Error, "%s", kernels[i].name_);
ET_LOG_KERNEL_KEY(kernels[i].kernel_key_);
}
return Error::Internal;
}
// for debugging purpose
ET_UNUSED const char* lib_name =
et_pal_get_shared_library_name(kernels.data());
for (const auto& kernel : kernels) {
// Linear search. This is fine if the number of kernels is small.
for (size_t i = 0; i < num_registered_kernels; i++) {
Kernel k = registered_kernels[i];
if (strcmp(kernel.name_, k.name_) == 0 &&
kernel.kernel_key_ == k.kernel_key_) {
ET_LOG(Error, "Re-registering %s, from %s", k.name_, lib_name);
ET_LOG_KERNEL_KEY(k.kernel_key_);
return Error::InvalidArgument;
}
}
registered_kernels[num_registered_kernels++] = kernel;
}
ET_LOG(
Debug,
"Successfully registered all kernels from shared library: %s",
lib_name);
return Error::Ok;
}
} // namespace
// Registers the kernels, but panics if an error occurs. Always returns Ok.
Error register_kernels(const Span<const Kernel> kernels) {
Error success = register_kernels_internal(kernels);
if (success == Error::InvalidArgument || success == Error::Internal) {
ET_CHECK_MSG(
false,
"Kernel registration failed with error %" PRIu32
", see error log for details.",
static_cast<uint32_t>(success));
}
return success;
}
namespace {
/**
* Writes `num` as a decimal string to `buf` and returns the number of bytes
* written. Returns -1 if `buf` is too small or if `num` is not supported.
*/
int copy_char_as_number_to_buf(int num, char* buf, size_t buf_size) {
if (num < 0) {
return -1;
}
if (num < 10) {
if (buf_size < 1) {
return -1;
}
*buf = '0' + (char)num;
return 1;
}
if (num < 100) {
if (buf_size < 2) {
return -1;
}
*buf++ = '0' + ((char)num) / 10;
*buf = '0' + ((char)num) % 10;
return 2;
}
return -1;
}
} // namespace
namespace internal {
Error make_kernel_key_string(
Span<const TensorMeta> key,
char* buf,
size_t buf_size) {
if (key.empty()) {
// If no tensor is present in an op, kernel key does not apply.
if (buf_size > 0) {
buf[0] = '\0';
}
return Error::Ok;
}
// Reserve one byte for null terminator.
if (buf_size < 1) {
return Error::InvalidArgument;
}
buf_size -= 1;
// Add prefix.
if (buf_size < 3) {
return Error::InvalidArgument;
}
memcpy(buf, "v1/", 3);
buf += 3;
buf_size -= 3;
// Add tensor meta.
for (size_t i = 0; i < key.size(); i++) {
auto& meta = key[i];
// Add dtype.
int n = copy_char_as_number_to_buf((int)meta.dtype_, buf, buf_size);
if (n < 0) {
return Error::InvalidArgument;
}
buf += n;
buf_size -= n;
// Add separator between dtype and dim order.
if (buf_size < 1) {
return Error::InvalidArgument;
}
*buf++ = ';';
buf_size -= 1;
// Add dim order.
for (size_t j = 0; j < meta.dim_order_.size(); j++) {
n = copy_char_as_number_to_buf((int)meta.dim_order_[j], buf, buf_size);
if (n < 0) {
return Error::InvalidArgument;
}
buf += n;
buf_size -= n;
if (j < meta.dim_order_.size() - 1) {
if (buf_size < 1) {
return Error::InvalidArgument;
}
*buf++ = ',';
buf_size -= 1;
}
}
if (i < key.size() - 1) {
if (buf_size < 1) {
return Error::InvalidArgument;
}
*buf++ = '|';
buf_size -= 1;
}
}
*buf = '\0'; // Space for this was reserved above.
return Error::Ok;
}
} // namespace internal
bool registry_has_op_function(
const char* name,
Span<const TensorMeta> meta_list) {
return get_op_function_from_registry(name, meta_list).ok();
}
Result<OpFunction> get_op_function_from_registry(
const char* name,
Span<const TensorMeta> meta_list) {
std::array<char, internal::kKernelKeyBufSize> key_string;
Error err = internal::make_kernel_key_string(
meta_list, key_string.data(), key_string.size());
if (err != Error::Ok) {
ET_LOG(Error, "Failed to make kernel key string");
return err;
}
KernelKey kernel_key = KernelKey(key_string.data());
int32_t fallback_idx = -1;
for (size_t idx = 0; idx < num_registered_kernels; idx++) {
if (strcmp(registered_kernels[idx].name_, name) == 0) {
if (registered_kernels[idx].kernel_key_ == kernel_key) {
return registered_kernels[idx].op_;
}
if (registered_kernels[idx].kernel_key_.is_fallback()) {
fallback_idx = idx;
}
}
}
if (fallback_idx != -1) {
return registered_kernels[fallback_idx].op_;
}
ET_LOG(Error, "kernel '%s' not found.", name);
ET_LOG_TENSOR_META(meta_list);
return Error::OperatorMissing;
}
Span<const Kernel> get_registered_kernels() {
return {registered_kernels, num_registered_kernels};
}
} // namespace ET_RUNTIME_NAMESPACE
} // namespace executorch