Skip to content

Make export llama checkpoint and param optional #9456

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 12 additions & 26 deletions examples/models/llama/export_llama_lib.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,26 +123,19 @@ def verbose_export():


def build_model(
modelname: str = "llama3",
extra_opts: str = "",
*,
par_local_output: bool = False,
resource_pkg_name: str = __name__,
model: str,
checkpoint: str,
params: str,
output_dir: Optional[str] = ".",
extra_opts: Optional[str] = "",
) -> str:
if False: # par_local_output:
output_dir_path = "par:."
else:
output_dir_path = "."

argString = f"--model {modelname} --checkpoint par:model_ckpt.pt --params par:model_params.json {extra_opts} --output-dir {output_dir_path}"
argString = f"--model {model} --checkpoint {checkpoint} --params {params} {extra_opts} --output-dir {output_dir}"
parser = build_args_parser()
args = parser.parse_args(shlex.split(argString))
# pkg_name = resource_pkg_name
return export_llama(args)


def build_args_parser() -> argparse.ArgumentParser:
ckpt_dir = f"{Path(__file__).absolute().parent.as_posix()}"
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--output-dir", default=".", help="output directory")
# parser.add_argument(
Expand Down Expand Up @@ -191,8 +184,8 @@ def build_args_parser() -> argparse.ArgumentParser:
parser.add_argument(
"-c",
"--checkpoint",
default=f"{ckpt_dir}/params/demo_rand_params.pth",
help="checkpoint path",
required=False,
help="Path to the checkpoint .pth file. When not provided, the model will be initialized with random weights.",
)

parser.add_argument(
Expand Down Expand Up @@ -273,8 +266,8 @@ def build_args_parser() -> argparse.ArgumentParser:
parser.add_argument(
"-p",
"--params",
default=f"{ckpt_dir}/params/demo_config.json",
help="config.json",
required=False,
help="Config file for model parameters. When not provided, the model will fallback on default values defined in examples/models/llama/model_args.py.",
)
parser.add_argument(
"--optimized_rotation_path",
Expand Down Expand Up @@ -561,7 +554,7 @@ def _prepare_for_llama_export(args) -> LLMEdgeManager:
checkpoint_dir = (
canonical_path(args.checkpoint_dir) if args.checkpoint_dir else None
)
params_path = canonical_path(args.params)
params_path = canonical_path(args.params) if args.params else None
output_dir_path = canonical_path(args.output_dir, dir=True)
weight_type = WeightType.FAIRSEQ2 if args.fairseq2 else WeightType.LLAMA

Expand Down Expand Up @@ -959,7 +952,7 @@ def _load_llama_model(
*,
checkpoint: Optional[str] = None,
checkpoint_dir: Optional[str] = None,
params_path: str,
params_path: Optional[str] = None,
use_kv_cache: bool = False,
use_sdpa_with_kv_cache: bool = False,
generate_full_logits: bool = False,
Expand All @@ -986,13 +979,6 @@ def _load_llama_model(
An instance of LLMEdgeManager which contains the eager mode model.
"""

assert (
checkpoint or checkpoint_dir
) and params_path, "Both checkpoint/checkpoint_dir and params can't be empty"
logging.info(
f"Loading model with checkpoint={checkpoint}, params={params_path}, use_kv_cache={use_kv_cache}, weight_type={weight_type}"
)

if modelname in EXECUTORCH_DEFINED_MODELS:
module_name = "llama"
model_class_name = "Llama2Model" # TODO: Change to "LlamaModel" in examples/models/llama/model.py.
Expand Down
43 changes: 27 additions & 16 deletions examples/models/llama/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,14 +38,13 @@ def __init__(self, **kwargs):
resource_dir = get_default_model_resource_dir(__file__)

# Use single checkpoint file.
checkpoint_path = kwargs.get(
"checkpoint", resource_dir / "demo_rand_params.pth"
)
params_path = kwargs.get("params", resource_dir / "demo_config.json")

checkpoint_path = kwargs.get("checkpoint", None)
# Check if checkpoint_dir was provided for a sharded checkpoint.
checkpoint_dir = kwargs.get("checkpoint_dir", None)

# Params file.
params_path = kwargs.get("params", None)

self.use_kv_cache = kwargs.get("use_kv_cache", False)
self.use_sdpa_with_kv_cache_op = kwargs.get("use_sdpa_with_kv_cache", False)
self.generate_full_logits = kwargs.get("generate_full_logits", False)
Expand All @@ -66,6 +65,7 @@ def __init__(self, **kwargs):
# flake8: noqa: TOR102
cps = []
# Load sharded checkpoint.
checkpoint = {}
if checkpoint_dir is not None:
# Load multiple checkpoint; ignore the single path.
checkpoint_path = None
Expand Down Expand Up @@ -93,7 +93,7 @@ def __init__(self, **kwargs):
# Do not duplicate layers shared between each checkpoint.
checkpoint[key] = cps[0][key]
# Load single checkpoint.
else:
elif checkpoint_path:
checkpoint = torch.load(checkpoint_path, map_location=device, mmap=True)

# If given checkpoint is fairseq, convert to llama checkpoint.
Expand Down Expand Up @@ -122,8 +122,12 @@ def __init__(self, **kwargs):
"""
)

with open(params_path, "r") as f:
params = json.loads(f.read())
# Get optional params.
params = {}
if params_path:
with open(params_path, "r") as f:
params = json.loads(f.read())

output_prune_map = None
if self.output_prune_map_path is not None:
with open(self.output_prune_map_path, "r") as f:
Expand Down Expand Up @@ -170,7 +174,11 @@ def __init__(self, **kwargs):
with torch.device("meta"):
# Model itself is loaded in default dtype, fp32.
self.model_ = Transformer(model_args)
self.model_.checkpoint_dtype = get_checkpoint_dtype(checkpoint)
# Get checkpoint dtype.
if checkpoint:
self.model_.checkpoint_dtype = get_checkpoint_dtype(checkpoint)
else:
self.model_.checkpoint_dtype = None

if "int8" in str(checkpoint_path):
print("Using int8 weight-only quantization!")
Expand Down Expand Up @@ -244,16 +252,19 @@ def __init__(self, **kwargs):
# Also, the checkpoint is loaded and dtype promoted to the transformer's dtype, which is
# by default initialized to fp32. This is fine because every other supported type
# losslessly converts to fp32, so we don't lose precision here.
missing, unexpected = self.model_.load_state_dict(
checkpoint,
strict=False,
assign=True,
) # self.model_ = Transformer(gptconf)
if checkpoint:
missing, unexpected = self.model_.load_state_dict(
checkpoint,
strict=False,
assign=True,
) # self.model_ = Transformer(gptconf)
else:
print("Checkpoint not provided, defaulting to uninitialized weights.")
self.model_.to_empty(device="cpu")
except RuntimeError as e:
print(
"Could not load checkpoint into mode, defaulting to random uninitialized weights."
f"Could not load checkpoint into mode and will default to uninitialized weights due to error: {e}."
)
print(f"Error: {e}")
# Need to provide concrete (empty) values for meta-initialized tensors for quantization.
self.model_.to_empty(device="cpu")

Expand Down
2 changes: 1 addition & 1 deletion examples/models/llama/model_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ class ModelArgs:
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = -1 # defined later by tokenizer
vocab_size: int = 512 # Arbitrary value, should be defined later by tokenizer.
hidden_dim: Optional[int] = None
head_dim: Optional[int] = None # Optional customized head_dim
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
Expand Down
12 changes: 11 additions & 1 deletion examples/models/llava/export_llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,17 @@ def forward(self, input_pos, embeddings):
dtype_override = DType.fp32
parser = build_args_parser()
args = parser.parse_args(
["-X", "-qmode", "8da4w", "--group_size", "128", "--embedding-quantize", "4,32"]
[
"-p",
"params.json",
"-X",
"-qmode",
"8da4w",
"--group_size",
"128",
"--embedding-quantize",
"4,32",
]
)
quant_transform = get_quant_weight_transform(args, dtype_override, False)
_, quantizers, _ = get_quantizer_and_quant_params(args)
Expand Down
Loading