Skip to content

Latest commit

 

History

History
315 lines (241 loc) · 9.81 KB

detect_small_objects.md

File metadata and controls

315 lines (241 loc) · 9.81 KB
comments
true

Detect Small Objects

This guide shows how to detect small objects with the Inference, Ultralytics or Transformers packages using InferenceSlicer.

Baseline Detection

Small object detection in high-resolution images presents challenges due to the objects' size relative to the image resolution.

=== "Inference" ```python import cv2 import supervision as sv from inference import get_model

model = get_model(model_id="yolov8x-640")
image = cv2.imread(<SOURCE_IMAGE_PATH>)
results = model.infer(image)[0]
detections = sv.Detections.from_inference(results)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

=== "Ultralytics" ```python import cv2 import supervision as sv from ultralytics import YOLO

model = YOLO("yolov8x.pt")
image = cv2.imread(<SOURCE_IMAGE_PATH>)
results = model(image)[0]
detections = sv.Detections.from_ultralytics(results)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

=== "Transformers" ```python import torch import supervision as sv from PIL import Image from transformers import DetrImageProcessor, DetrForSegmentation

processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50")

image = Image.open(<SOURCE_IMAGE_PATH>)
inputs = processor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)

width, height = image_slice.size
target_size = torch.tensor([[width, height]])
results = processor.post_process_object_detection(
    outputs=outputs, target_sizes=target_size)[0]
detections = sv.Detections.from_transformers(results)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

labels = [
    model.config.id2label[class_id]
    for class_id
    in detections.class_id
]

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections, labels=labels)
```

basic-detection

Input Resolution

Modifying the input resolution of images before detection can enhance small object identification at the cost of processing speed and increased memory usage. This method is less effective for ultra-high-resolution images (4K and above).

=== "Inference" ```{ .py hl_lines="5" } import cv2 import supervision as sv from inference import get_model

model = get_model(model_id="yolov8x-1280")
image = cv2.imread(<SOURCE_IMAGE_PATH>)
results = model.infer(image)[0]
detections = sv.Detections.from_inference(results)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

=== "Ultralytics" ```{ .py hl_lines="7" } import cv2 import supervision as sv from ultralytics import YOLO

model = YOLO("yolov8x.pt")
image = cv2.imread(<SOURCE_IMAGE_PATH>)
results = model(image, imgsz=1280)[0]
detections = sv.Detections.from_ultralytics(results)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

detection-with-high-input-resolution

Inference Slicer

InferenceSlicer processes high-resolution images by dividing them into smaller segments, detecting objects within each, and aggregating the results.

=== "Inference" ```{ .py hl_lines="9-14" } import cv2 import numpy as np import supervision as sv from inference import get_model

model = get_model(model_id="yolov8x-640")
image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
    results = model.infer(image_slice)[0]
    return sv.Detections.from_inference(results)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

=== "Ultralytics" ```{ .py hl_lines="9-14" } import cv2 import numpy as np import supervision as sv from ultralytics import YOLO

model = YOLO("yolov8x.pt")
image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
    result = model(image_slice)[0]
    return sv.Detections.from_ultralytics(result)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

=== "Transformers" ```{ .py hl_lines="13-28" } import cv2 import torch import numpy as np import supervision as sv from PIL import Image from transformers import DetrImageProcessor, DetrForObjectDetection

processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")

image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
    image_slice = cv2.cvtColor(image_slice, cv2.COLOR_BGR2RGB)
    image_slice = Image.fromarray(image_slice)
    inputs = processor(images=image_slice, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)

    width, height = image_slice.size
    target_size = torch.tensor([[width, height]])
    results = processor.post_process_object_detection(
        outputs=outputs, target_sizes=target_size)[0]
    return sv.Detections.from_transformers(results)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

labels = [
    model.config.id2label[class_id]
    for class_id
    in detections.class_id
]

annotated_image = box_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections, labels=labels)
```

detection-with-inference-slicer

Small Object Segmentation

InferenceSlicer can perform segmentation tasks too.

=== "Inference" ```{ .py hl_lines="6 16 19-20" } import cv2 import numpy as np import supervision as sv from inference import get_model

model = get_model(model_id="yolov8x-seg-640")
image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
    results = model.infer(image_slice)[0]
    return sv.Detections.from_inference(results)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

mask_annotator = sv.MaskAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = mask_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

=== "Ultralytics" ```{ .py hl_lines="6 16 19-20" } import cv2 import numpy as np import supervision as sv from ultralytics import YOLO

model = YOLO("yolov8x-seg.pt")
image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
    result = model(image_slice)[0]
    return sv.Detections.from_ultralytics(result)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

mask_annotator = sv.MaskAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = mask_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)
```

detection-with-inference-slicer