-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathmath_utils.cpp
252 lines (216 loc) · 5.29 KB
/
math_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Copyright (c) 2018-2025 Robert J. Hijmans
//
// This file is part of the "spat" library.
//
// spat is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// spat is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with spat. If not, see <http://www.gnu.org/licenses/>.
#include <cmath>
#include <limits>
#include <vector>
#include <algorithm>
#include <random>
/*
std::vector<double> mean2d(const std::vector<std::vector<double>> &x) {
size_t n = x[0].size();
size_t nn = x.size();
std::vector<double> out(n, NAN);
size_t d;
double v;
for (size_t i=0; i<n; i++) {
v = 0;
d = 0;
for (size_t j=0; j<nn; j++) {
if (!std::isnan(x[i][j])) {
v += x[i][j];
d++;
}
}
if (d > 0) {
out[i] = v / d;
}
}
return out;
}
*/
void na_omit(std::vector<double> &x) {
x.erase(std::remove_if(std::begin(x), std::end(x),
[](const double& value) { return std::isnan(value); }),
std::end(x));
}
void vector_minmax(std::vector<double> v, double &min, int &imin, double &max, int &imax) {
std::vector<double>::size_type p=0;
imax = -1; imin=-1;
min = std::numeric_limits<double>::max();
max = std::numeric_limits<double>::lowest();
for (auto &val : v) {
if (!std::isnan(val)) {
if (val > max) {
imax = p;
max = val;
}
if (val < min) {
imin = p;
min = val;
}
}
p++;
}
if (imax == -1) {
max = NAN;
min = NAN;
}
}
double roundn(double x, int n){
double d = pow(10.0, n);
return std::round(x * d) / d;
}
double signif(double x, unsigned n) {
double b = x;
unsigned i;
for (i = 0; b >= 1; ++i) {
b = b / 10;
}
int d = n-i;
return roundn(x, d);
}
bool is_equal(double a, double b, double tolerance=10.0) {
double tol = std::max(tolerance, std::abs(std::min(a,b))) * std::numeric_limits<double>::epsilon();
return ((a==b) || (std::abs(a-b) < tol) );
}
bool about_equal(double a, double b, double tolerance) {
return ((a==b) || (std::abs(a-b) < tolerance));
}
bool is_equal_relative(double a, double b, double tolerance) {
tolerance = std::max(fabs(a), fabs(b)) * tolerance;
return about_equal(a, b, tolerance);
}
bool is_equal_range(double x, double y, double range, double tolerance) {
return (fabs(x - y) / range) < tolerance ;
}
double median(const std::vector<double>& v) {
size_t n = v.size();
std::vector<double> vv;
vv.reserve(n);
for (size_t i=0; i<n; i++) {
if (!std::isnan(v[i])) {
vv.push_back(v[i]);
}
}
n = vv.size();
if (n == 0) {
return(NAN);
}
size_t n2 = n / 2;
std::nth_element(vv.begin(), vv.begin()+n2, vv.end());
double med = vv[n2];
return med;
}
std::vector<double> movingMedian(const std::vector<double> &x, size_t n) {
std::vector<double> out(x.size());
std::vector<double> d(n, NAN);
size_t half = (n/2);
size_t half1 = half+1;
// fill left side
for (size_t i=0; i<half; i++) {
for (size_t j=0; j< (half1+i); j++) {
d[j] = x[j];
}
out[i] = median(d);
}
// middle
size_t maxn = out.size() - half;
std::vector<double> v;
for (size_t i=half; i<maxn; i++) {
v = std::vector<double>(x.begin()+i-half, x.begin()+i+half1);
out[i] = median(v);
}
// right side
int j=0;
for (size_t i=maxn; i<out.size(); i++) {
v[j++] = NAN;
out[i] = median(v);
}
return(out);
}
double modal_value(std::vector<double> values, unsigned ties, bool narm, std::default_random_engine rgen, std::uniform_real_distribution<double> dist) {
if (narm) {
na_omit(values);
}
size_t n = values.size();
if (n == 0) return (NAN);
if (n == 1) return (values[0]);
std::vector<unsigned> counts(n, 0);
if (ties < 3) {
std::sort(values.begin(), values.end());
}
for (size_t i=0; i<n; ++i) {
counts[i] = 0;
size_t j = 0;
while ((j < i) && (values[i] != values[j])) {
++j;
}
++(counts[j]);
}
size_t maxCount = 0;
// first (lowest due to sorting)
if (ties == 0) {
for (size_t i = 1; i < n; ++i) {
if (counts[i] > counts[maxCount]) {
maxCount = i;
}
}
// last
} else if (ties == 1) {
for (size_t i = 1; i < n; ++i) {
if (counts[i] >= counts[maxCount]) {
maxCount = i;
}
}
// dont care (first, but not sorted)
} else if (ties == 2) {
for (size_t i = 1; i < n; ++i) {
if (counts[i] > counts[maxCount]) {
maxCount = i;
}
}
// random
} else if (ties == 3) {
size_t tieCount = 1;
for (size_t i = 1; i < n; ++i) {
if (counts[i] > counts[maxCount]) {
maxCount = i;
tieCount = 1;
} else if (counts[i] == counts[maxCount]) {
tieCount++;
double randnr = dist(rgen);
if (randnr < (1 / tieCount)) {
maxCount = i;
}
}
}
} else {
size_t tieCount = 1;
for (size_t i = 1; i < n; ++i) {
if (counts[i] > counts[maxCount]) {
maxCount = i;
tieCount = 1;
} else if (counts[i] == counts[maxCount]) {
tieCount++;
}
}
if (tieCount > 1 ) {
return(NAN);
}
}
return values[maxCount];
}